Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMA J ; 5(1): 151-156, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35224282

RESUMO

Salivary duct carcinoma (SDC) is a rare and highly aggressive salivary gland tumor with rapid growth, distant metastasis, and a high recurrence rate. Moreover, the parotid gland is the most common site with a poor prognosis. A lower frequency of distance metastasis to the liver, skin, and brain has also been reported, although the lungs, bones, and lymph nodes are the most common sites of SDC metastasis. We report a case of nonconvulsive status epilepticus (NCSE) in a 73-year-old male comatose patient having SDC of the parotid gland with an unusual metastasis to the skin and brain diagnosed by frequent cerebrospinal fluid examinations. Meningeal carcinomatosis usually has a poor prognosis, and NCSE is a reversible cause of altered mentation. Clinicians should know the unique set of epilepsy etiologies in patients with malignant tumors.

2.
JMA J ; 4(4): 434-438, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34796303

RESUMO

Granulomatosis with polyangiitis (GPA) is the systemic vasculitis affecting predominantly small vessels, but vasculitis of medium size artery can be associated. We treated a patient with GPA who had hemorrhagic instability because of a rupture of an aneurysm in the branch of the renal artery; the patient underwent arterial embolization (AE), and hemostasis was successfully achieved. Literature reviews were conducted on the basis of the data available on PubMed, and seven published reports of eight cases with renal artery aneurysms were identified. We concluded that emergency physicians should be aware of the existence of renal artery aneurysms associated with GPA. AE should be considered as one of the treatment choices whenever renal bleeding takes place.

3.
IEEE Trans Biomed Eng ; 68(12): 3534-3542, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33945467

RESUMO

This study aims to validate the advantage of new engineering method to maneuver multi-section robotic bronchoscope with first person view control in transbronchial biopsy. Six physician operators were recruited and tasked to operate a manual and a robotic bronchoscope to the peripheral area placed in patient-derived lung phantoms. The metrics collected were the furthest generation count of the airway the bronchoscope reached, force incurred to the phantoms, and NASA-Task Load Index. The furthest generation count of the airway the physicians reached using the manual and the robotic bronchoscopes were 6.6 ±1.2th and 6.7 ±0.8th. Robotic bronchoscopes successfully reached the 5th generation count into the peripheral area of the airway, while the manual bronchoscope typically failed earlier in the 3 rd generation. More force was incurred to the airway when the manual bronchoscope was used ( 0.24 ±0.20 [N]) than the robotic bronchoscope was applied ( 0.18 ±0.22 [N], ). The manual bronchoscope imposed more physical demand than the robotic bronchoscope by NASA-TLX score ( 55 ±24 vs 19 ±16, ). These results indicate that a robotic bronchoscope facilitates the advancement of the bronchoscope to the peripheral area with less physical demand to physician operators. The metrics collected in this study would expect to be used as a benchmark for the future development of robotic bronchoscopes.


Assuntos
Broncoscópios , Procedimentos Cirúrgicos Robóticos , Biópsia , Broncoscopia , Humanos , Pulmão
4.
J Neuroendovasc Ther ; 15(12): 805-810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37502001

RESUMO

Objective: Acute pulmonary embolism (PE) is a life-threatening cardiovascular event associated with high mortality and morbidity. The presence of a patent foramen ovale (PFO) in patients with acute PE represents a risk factor for mortality. Furthermore, a thrombus-in-transit via a PFO with impending paradoxical embolism carries a high mortality rate. Case Presentation: An adult patient with ischemic stroke caused by paradoxical embolism following PE underwent mechanical thrombectomy and achieved successful recanalization. Initial CT pulmonary angiography (CTPA) showed not only pulmonary thromboemboli but also bilateral atrial thromboemboli. During hospitalization, transesophageal echocardiography (TEE) revealed the PFO with a right-to-left shunt. Two months after rehabilitation undergone by the patient, PE completely disappeared and PFO closure was conducted to reduce the recurrence risk of ischemic stroke. Conclusion: Not only cardiologists but also interventional neurologists should understand that CTPA can demonstrate the thrombus-in-transit through the PFO and provides a reliable prediction of the sudden onset of ischemic stroke in patients with symptomatic PE. When identified, considering a case-by-case treatment approach by multidisciplinary teams is essential for preventing further life-threatening paradoxical embolization.

5.
Sci Rep ; 10(1): 10037, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572121

RESUMO

A substantial quantity of carbon onions in a durable film state is indispensable for its applications. In this study, large area fabrication of closely packed homogeneous carbon onion nanoparticle film using plasma-based ion implantation was demonstrated. Ag film deposited on a Si substrate was used as the implantation target for the hydrocarbon ions accelerated at 20 kV. Nanoparticles with the mean diameter of 7.5 nm were formed at the grain boundary of the Ag film. Carbon onions with the mean diameter of 17.4 nm were synthesized and arranged to a closely packed nanoparticle film with the thickness of around 200 nm by gradual thermal vaporization of the Ag. The closely packed configuration was achieved due to the isolated growth of carbon onion nanoparticle and high uniformity of the diameter. This process can be used in principle large area formation compered to typical ion implantation technique of carbon onion nanoparticle film, which can be applicable for the practical use in mechanical and electrochemical applications.

6.
Med Phys ; 47(6): 2337-2349, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32141080

RESUMO

PURPOSE: Magnetic resonance imaging (MRI)-guided percutaneous cryotherapy of abdominal lesions, an established procedure, uses MRI to guide and monitor the cryoablation of lesions. Methods to precisely guide cryotherapy probes with a minimum amount of trial-and-error are yet to be established. To aid physicians in attaining precise probe alignment without trial-and-error, a body-mounted motorized cryotherapy-probe alignment device (BMCPAD) with motion compensation was clinically tested in this study. The study also compared the contribution of body motion and organ motion compensation to the guidance accuracy of a body-mounted probe alignment device. METHODS: The accuracy of guidance using the BMCPAD was prospectively measured during MRI-guided percutaneous cryotherapies before insertion of the probes. Clinical parameters including patient age, types of anesthesia, depths of the target, and organ sites of target were collected. By using MR images of the target organs and fiducial markers embedded in the BMCPAD, we retrospectively simulated the guidance accuracy with body motion compensation, organ motion compensation, and no compensation. The collected data were analyzed to test the impact of motion compensation on the guidance accuracy. RESULTS: Thirty-seven physical guidance of probes were prospectively recorded for sixteen completed cases. The accuracy of physical guidance using the BMCPAD was 13.4 ± 11.1 mm. The simulated accuracy of guidance with body motion compensation, organ motion compensation, and no compensation was 2.4 ± 2.9 mm, 2.2 ± 1.6 mm, and 3.5 ± 2.9 mm, respectively. Data analysis revealed that the body motion compensation and organ motion compensation individually impacted the improvement in the accuracy of simulated guidance. Moreover, the difference in the accuracy of guidance either by body motion compensation or organ motion compensation was not statistically significant. The major clinical parameters impacting the accuracy of guidance were the body and organ motions. Patient age, types of anesthesia, depths of the target, and organ sites of target did not influence the accuracy of guidance using BMCPAD. The magnitude of body surface movement and organ movement exhibited mutual statistical correlation. CONCLUSIONS: The BMCPAD demonstrated guidance accuracy comparable to that of previously reported devices for CT-guided procedures. The analysis using simulated motion compensation revealed that body motion compensation and organ motion compensation individually impact the improvement in the accuracy of device-guided cryotherapy probe alignment. Considering the correlation between body and organ movements, we also determined that body motion compensation using the ring fiducial markers in the BMCPAD can be solely used to address both body and organ motions in MRI-guided cryotherapy.


Assuntos
Marcadores Fiduciais , Imageamento por Ressonância Magnética , Crioterapia , Humanos , Movimento (Física) , Estudos Retrospectivos
7.
IEEE Trans Biomed Eng ; 67(2): 379-390, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31034405

RESUMO

BACKGROUND: In a combined endoscopic third ventriculostomy (ETV) and endoscopic tumor biopsy (ETB) procedure, an optimal tool trajectory is mandatory to minimize trauma to surrounding cerebral tissue. OBJECTIVE: This paper presents wire-driven multi-section robot with push-pull wire. The robot is tested to attain follow-the-leader (FTL) motion to place surgical instruments through narrow passages while minimizing the trauma to tissues. METHODS: A wire-driven continuum robot with six sub-sections was developed and its kinematic model was proposed to achieve FTL motion. An accuracy test to assess the robot's ability to attain FTL motion along a set of elementary curved trajectory was performed. We also used hydrocephalus ventricular model created from human subject data to generate five ETV/ETB trajectories and conducted a study assessing the accuracy of the FTL motion along these clinically desirable trajectories. RESULTS: In the test with elementary curved paths, the maximal deviation of the robot was increased from 0.47 mm at 30 ° turn to 1.78 mm at 180 ° in a simple C-shaped curve. S-shaped FTL motion had lesser deviation ranging from 0.16 to 0.18 mm. In the phantom study, the greatest tip deviation was 1.45 mm, and the greatest path deviation was 1.23 mm. CONCLUSION: We present the application of a continuum robot with FTL motion to perform a combined ETV/ETB procedure. The validation study using human subject data indicated that the accuracy of FTL motion is relatively high. The study indicated that FTL motion may be useful tool for combined ETV and ETB.


Assuntos
Biópsia/instrumentação , Neoplasias Encefálicas/cirurgia , Endoscopia/instrumentação , Procedimentos Cirúrgicos Robóticos/instrumentação , Ventriculostomia/métodos , Biópsia/métodos , Neoplasias Encefálicas/patologia , Humanos , Hidrocefalia/cirurgia , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas
8.
Int J Comput Assist Radiol Surg ; 14(11): 2021-2029, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31289997

RESUMO

PURPOSE: Current manual catheters for transbronchial biopsy in the lung lack a steering ability, which hampers a physician's ability to reach nodules in the peripheral lung. The objective of this paper is to design and build a multisection robot with a follow-the-leader motion and compare the performance of the conventional catheter and our robotic catheter in the right main and right segmental lobar bronchus. METHODS: A three-section continuum robot with an outer diameter of 3 mm was developed. Each section includes one anchored wire and two driving wires made of stainless steel. Follow-the-leader control is implemented using a joystick for a physician to control the distal section of the robot, while the subsequent two sections follow the controlled distal section. RESULTS: The robotic catheter deviated from the preplanned approach path by less than the manual catheter did (robotic: [Formula: see text] mm and manual: [Formula: see text] mm), with [Formula: see text]. The average force applied to the wall, producing potential trauma to the wall, was less for the robotic catheter ([Formula: see text] N) than for the manual catheter ([Formula: see text] N), [Formula: see text]. CONCLUSION: This study demonstrated an improvement in the maneuverability for the robotic catheter. In addition to a greater aptitude for reaching a peripheral area of the lung, these findings suggest that the designated target in a peripheral area can be reached with less trauma to the bronchi wall.


Assuntos
Biópsia/instrumentação , Broncoscopia/métodos , Catéteres , Pulmão/diagnóstico por imagem , Robótica/instrumentação , Desenho de Equipamento , Humanos , Impressão Tridimensional
9.
Health Phys ; 115(2): 203-211, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29957685

RESUMO

The practicality of using a liquid scintillation method with a nonvolatile liquid scintillation absorbent for the measurement of airborne Rn (radon) in a residence was examined. The relationship between the radioactivity absorbed by the liquid scintillation absorbent and the radon concentration in the air was investigated in a calibrated walk-in radon chamber. The equivalent radioactivity of radon was calculated for Po radioactivity immediately after radioactive equilibrium was attained using successive decay equations via alpha-particle spectrometry based on the 1 h, indirect, selective measurement of the Po alpha-particle spectrum generated after sampling radon. We confirmed that the amounts of radon absorbed in the liquid scintillation absorbent were proportional to the radon concentration in the air. The calibration curve that exhibited reliable quantitative linearity from 500 to 8,000 Bq m in air was extrapolated to the region between 0 and 500 Bq m using the least-squares method with data from 500 to 8,000 Bq m. The validity of the extrapolated curve at less than 500 Bq m was confirmed by comparison of the measured radon concentrations in the room and atmosphere with those determined using an existing ionization chamber. Variations in the absorption of radon were observed due to changes in temperature and humidity. The health and environmental safety of nonvolatile liquid scintillation absorbent was also considered.


Assuntos
Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Radônio/análise , Contagem de Cintilação/instrumentação , Calibragem
10.
Phys Med Biol ; 63(8): 085010, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29546845

RESUMO

Patient-mounted needle guide devices for percutaneous ablation are vulnerable to patient motion. The objective of this study is to develop and evaluate a software system for an MRI-compatible patient-mounted needle guide device that can adaptively compensate for displacement of the device due to patient motion using a novel image-based automatic device-to-image registration technique. We have developed a software system for an MRI-compatible patient-mounted needle guide device for percutaneous ablation. It features fully-automated image-based device-to-image registration to track the device position, and a device controller to adjust the needle trajectory to compensate for the displacement of the device. We performed: (a) a phantom study using a clinical MR scanner to evaluate registration performance; (b) simulations using intraoperative time-series MR data acquired in 20 clinical cases of MRI-guided renal cryoablations to assess its impact on motion compensation; and (c) a pilot clinical study in three patients to test its feasibility during the clinical procedure. FRE, TRE, and success rate of device-to-image registration were 2.71 ± 2.29 mm, 1.74 ± 1.13 mm, and 98.3% for the phantom images. The simulation study showed that the motion compensation reduced the targeting error for needle placement from 8.2 mm to 5.4 mm (p < 0.0005) in patients under general anesthesia (GA), and from 14.4 mm to 10.0 mm (p < 1.0 × 10(−5)) in patients under monitored anesthesia care (MAC). The pilot study showed that the software registered the device successfully in a clinical setting. Our simulation study demonstrated that the software system could significantly improve targeting accuracy in patients treated under both MAC and GA. Intraprocedural image-based device-to-image registration was feasible.


Assuntos
Criocirurgia/métodos , Processamento de Imagem Assistida por Computador/métodos , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Agulhas , Cirurgia Assistida por Computador/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Automação , Simulação por Computador , Feminino , Humanos , Período Intraoperatório , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Projetos Piloto , Reprodutibilidade dos Testes , Software
11.
Int J Comput Assist Radiol Surg ; 13(1): 125-133, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28766177

RESUMO

PURPOSE: To develop and evaluate an approach to estimate the respiratory-induced motion of lesions in the chest and abdomen. MATERIALS AND METHODS: The proposed approach uses the motion of an initial reference needle inserted into a moving organ to estimate the lesion (target) displacement that is caused by respiration. The needles position is measured using an inertial measurement unit (IMU) sensor externally attached to the hub of an initially placed reference needle. Data obtained from the IMU sensor and the target motion are used to train a learning-based approach to estimate the position of the moving target. An experimental platform was designed to mimic respiratory motion of the liver. Liver motion profiles of human subjects provided inputs to the experimental platform. Variables including the insertion angle, target depth, target motion velocity and target proximity to the reference needle were evaluated by measuring the error of the estimated target position and processing time. RESULTS: The mean error of estimation of the target position ranged between 0.86 and 1.29 mm. The processing maximum training and testing time was 5 ms which is suitable for real-time target motion estimation using the needle position sensor. CONCLUSION: The external motion of an initially placed reference needle inserted into a moving organ can be used as a surrogate, measurable and accessible signal to estimate in real-time the position of a moving target caused by respiration; this technique could then be used to guide the placement of subsequently inserted needles directly into the target.


Assuntos
Movimento (Física) , Agulhas , Respiração , Mecânica Respiratória/fisiologia , Abdome/diagnóstico por imagem , Algoritmos , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Tórax/diagnóstico por imagem
12.
Nat Commun ; 8(1): 1675, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29162811

RESUMO

Hydrogenated amorphous carbon (a-C:H) is capable of providing a near-frictionless lubrication state when rubbed in dry sliding contacts. Nevertheless, the mechanisms governing superlubricity in a-C:H are still not well comprehended, mainly due to the lack of spatially resolved structural information of the buried contact surface. Here, we present structural analysis of the carbonaceous sliding interfaces at the atomic scale in two superlubricious solid lubricants, a-C:H and Si-doped a-C:H (a-C:H:Si), by probing the contact area using state-of-the-art scanning electron transmission microscopy and electron energy-loss spectroscopy. The results emphasize the diversity of superlubricity mechanisms in a-C:Hs. They suggest that the occurrence of a superlubricious state is generally dependent on the formation of interfacial nanostructures, mainly a tribolayer, by different carbon rehybridization pathways. The evolution of such anti-friction nanostructures highly depends on the contact mechanics and the counterpart material. These findings enable a more effective manipulation of superlubricity and developments of new carbon lubricants with robust lubrication properties.

13.
Med Phys ; 43(2): 843-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26843245

RESUMO

PURPOSE: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient's whole body motion. METHODS: Keeping the device's minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient's body, even in the presence of the patient's frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors' validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. RESULTS: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth of 80 mm. The phantom test indicated that the accuracy of probe placement was significantly better with the robotic instrument guide (4.1 mm) than without the guide (6.3 mm, p<0.001), even in the presence of body motion. When independent organ motion was artificially added, in addition to body motion, the advantage of accurate probe placement using the robotic instrument guide disappeared statistically [i.e., 6.0 mm with the robotic guide and 5.9 mm without the robotic guide (p = 0.906)]. When the robotic instrument guide was used, the total time required to complete the procedure was reduced from 19.6 to 12.7 min (p<0.001). Multivariable analysis indicated that the robotic instrument guide, not the organ motion, was the cause of statistical significance. The statistical power the authors obtained was 88% in accuracy assessment and 99% higher in duration measurement. CONCLUSIONS: The body-mounted robotic instrument guide allows positioning of the probe during image-guided cryotherapy of renal cancer and was done in fewer attempts and in less time than the free-hand approach. The accuracy of the placement of the cryotherapy probe was better using the robotic instrument guide than without the guide when no organ motion was present. The accuracy between the robotic and free-hand approach becomes comparable when organ motion was present.


Assuntos
Criocirurgia/instrumentação , Neoplasias Renais/cirurgia , Robótica , Cirurgia Assistida por Computador/instrumentação , Humanos , Neoplasias Renais/fisiopatologia , Imageamento por Ressonância Magnética , Modelos Biológicos , Movimento
14.
Int J Comput Assist Radiol Surg ; 11(4): 589-602, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26476639

RESUMO

PURPOSE: The hysteresis operation is an outstanding issue in tendon-driven actuation--which is used in robot-assisted surgery--as it is incompatible with kinematic mapping for control and trajectory planning. Here, a new tendon-driven continuum robot, designed to fit existing neuroendoscopes, is presented with kinematic mapping for hysteresis operation. METHODS: With attention to tension in tendons as a salient factor of the hysteresis operation, extended forward kinematic mapping (FKM) has been developed. In the experiment, the significance of every component in the robot for the hysteresis operation has been investigated. Moreover, the prediction accuracy of postures by the extended FKM has been determined experimentally and compared with piecewise constant curvature assumption. RESULTS: The tendons were the most predominant factor affecting the hysteresis operation of the robot. The extended FKM including friction in tendons predicted the postures in the hysteresis operation with improved accuracy (2.89 and 3.87 mm for the single and the antagonistic-tendons layouts, respectively). The measured accuracy was within the target value of 5 mm for planning of neuroendoscopic resection of intraventricle tumors. CONCLUSION: The friction in tendons was the most predominant factor for the hysteresis operation in the robot. The extended FKM including this factor can improve prediction accuracy of the postures in the hysteresis operation. The trajectory of the new robot can be planned within target value for the neuroendoscopic procedure by using the extended FKM.


Assuntos
Neuroendoscopia/métodos , Robótica/instrumentação , Desenho de Equipamento , Humanos , Teste de Materiais , Fenômenos Mecânicos , Reprodutibilidade dos Testes
15.
IEEE ASME Trans Mechatron ; 20(5): 2252-2263, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26380544

RESUMO

In this paper, we present a tendon-driven continuum robot for endoscopic surgery. The robot has two sections for articulation actuated by tendon wires. By actuating the two sections independently, the robot can generate a variety of tip positions while maintaining the tip direction. This feature offers more flexibility in positioning the tip for large viewing angles of up to 180 degrees than does a conventional endoscope. To accurately estimate the tip position at large viewing angles, we employed kinematic mapping with a tension propagation model including friction between the tendon wires and the robot body. In a simulation study using this kinematic-mapping, the two-section robot at a target scale (outer diameter 1.7 mm and length 60 mm) produced a variety of tip positions within 50-mm ranges at the 180°-angle view. In the experimental validation, a 10:1 scale prototype performed three salient postures with different tip positions at the 180°-angle view. The proposed forward kinematic mapping (FKM) predicted the tip position within a tip-to-tip error of 6 mm over the 208-mm articulating length. The tip-to-tip error by FKM was significantly less than the one by conventional piecewise-constant-curvature approximation (PCCA) (FKM: 5.9 ± 2.9 mm vs. PCCA: 23.7 ± 3.6 mm, n=15, P < 0.01).

16.
ACS Appl Mater Interfaces ; 6(16): 13389-405, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25100259

RESUMO

Superlubricity of Si-containing hydrogenated amorphous carbon (a-C:H:Si) films has been systematically investigated in relation to the film bonding structure and the environmental atmosphere. Structural diversity induced by hydrogen incorporation (i.e., 17.3-36.7 at. % H), namely sp(2)-bonded a-C, diamond-like or polymer-like, and tribointeractions activated by the participation of environmental gaseous molecules mainly determine the frictional behaviors of a-C:H:Si films. A suitable control of hydrogen content in the film (i.e., the inherent hydrogen coverage) is obligate to obtain durable superlubricity in a distinct gaseous atmosphere such as dry N2, reactive H2 or humid air. Rapid buildup of running-in-induced antifriction tribolayers at the contact interface, which is more feasible in self-mated sliding, is crucial for achieving a superlubric state. Superior tribological performances have been observed for the polymer-like a-C:H:Si (31.9 at. % H) film, as this hydrogen-rich sample can exhibit superlow friction in various atmospheres including dry inert N2 (µ ∼ 0.001), Ar (µ ∼ 0.012), reactive H2 (µ ∼ 0.003) and humid air (µ ∼ 0.004), and can maintain ultralow friction in corrosive O2 (µ ∼ 0.084). Hydrogen is highlighted for its decisive role in obtaining superlow friction. The occurrence of superlubricity in a-C:H:Si films is generally attributed to a synergistic effect of phase transformation, surface passivation and shear localization, for instance, the near-frictionless state occurred in dry N2. The contribution of each mechanism to the friction reduction depends on the specific intrafilm and interfilm interactions along with the atmospheric effects. These antifriction a-C:H:Si films are promising for industrial applications as lubricants.

17.
Int J Comput Assist Radiol Surg ; 9(5): 867-74, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24510205

RESUMO

PURPOSE:    Robotic catheters have been proposed to increase the efficacy and safety of the radio-frequency ablation treatment. The robotized motion of current robotic catheters mimics the motion of manual ones-namely, deflection in one direction and rotation around the catheter. With the expectation that the higher dexterity may achieve further efficacy and safety of the robotically driven treatment, we prototyped a four-wire-driven robotic catheter with the ability to deflect in two- degree-of-freedom motions in addition to rotation. METHODS:    A novel quad-directional structure with two wires was designed and developed to attain yaw and pitch motion in the robotic catheter. We performed a mechanical evaluation of the bendability and maneuverability of the robotic catheter and compared it with current manual catheters. RESULTS:    We found that the four-wire-driven robotic catheter can achieve a pitching angle of 184.7[Formula: see text] at a pulling distance of wire for 11 mm, while the yawing angle was 170.4[Formula: see text] at 11 mm. The robotic catheter could attain the simultaneous two- degree-of-freedom motions in a simulated cardiac chamber. CONCLUSION:    The results indicate that the four-wire-driven robotic catheter may offer physicians the opportunity to intuitively control a catheter and smoothly approach the focus position that they aim to ablate.


Assuntos
Cateterismo Cardíaco/instrumentação , Ablação por Cateter/instrumentação , Diagnóstico por Imagem/métodos , Robótica/instrumentação , Cirurgia Assistida por Computador/métodos , Taquicardia Ventricular/cirurgia , Aorta Torácica , Desenho de Equipamento , Humanos , Reprodutibilidade dos Testes
18.
J Nanosci Nanotechnol ; 13(2): 1063-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23646572

RESUMO

Diamond-like carbon (DLC) films have been extensively studied over the past decades due to their unique combination of properties; in particular, silicon-doped DLC (Si-DLC) films are of significant interest for tribological effects, they had a very low friction coefficient and possessed the potential to improve wear performance in humid atmospheres and at higher temperatures. But many experimental results of the Si-DLC films showed that their tribological properties changed greatly on different silicon content. In the paper, molecular dynamics (MD) simulations were used to study microstructure of amorphous Si-DLC films and a sliding friction process between DLC and Si-DLC films on un-lubricated and oil-lubricated conditions respectively. The results show that silicon atoms are almost surrounded by carbon atoms in all Si-DLC films. The sp3/sp2 ratio in Si-DLC films increases with the increasing silicon content. After sliding, a transfer film between the DLC and Si-DLC films is formed on the un-lubricated condition. In contrast, a boundary lubrication layer is found on the oil-lubricated condition. Moreover, the friction forces on the un-lubricated condition are larger than those on the oil-lubricated condition.

19.
Med Image Comput Comput Assist Interv ; 16(Pt 1): 364-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24505687

RESUMO

We propose the development and assessment of a multi-section continuum robot for endoscopic surgical clipping of intracranial aneurysms. The robot has two sections for bending actuated by tendon wires. By actuating the two sections independently, the robot can generate a variety of posture combinations by these sections while maintaining the tip angle. This feature offers more flexibility in positioning of the tip than a conventional endoscope for large viewing angles of up to 180 degrees. To estimate the flexible positioning of the tip, we developed kinematic mapping with friction in tendon wires. In a kinematic-mapping simulation, the two-section robot at the target scale (i.e., an outer diameter of 1.7 mm and a length of 60 mm) had a variety of tip positions within 50-mm ranges at the 180 degree-angled view. In the experimental validation, the 1:10 scale prototype performed the three salient postures with different tip positions at the 1800-angled view.


Assuntos
Endoscópios , Aneurisma Intracraniano/patologia , Aneurisma Intracraniano/cirurgia , Robótica/instrumentação , Cirurgia Assistida por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos
20.
Invest Ophthalmol Vis Sci ; 49(12): 5319-24, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18469179

RESUMO

PURPOSE: To analyze the relationship between tear volume and tear film lipid layer (TFLL) spread. METHODS: Twenty-nine eyes from 22 subjects, including normal eyes and eyes with aqueous tear-deficient dry eye, were enrolled in this study. In all eyes, the radius of curvature (R: mm) of the central lower tear meniscus was measured with a video-meniscometer, and interference images from the TFLL were recorded with a video-interferometer. Interference images were captured as still images every 0.05 second, and the relationship between the acquisition time for each image after a blink and the averaged heights of the spreading TFLL in the upstroke of the blink were calculated. RESULTS: In all cases, the time-dependent changes in TFLL spread could be described by the expression H(t) - H(0) = rho[1 - exp(-t/lambda)], where H(t) is the averaged height in millimeters at time t, H(0) is the averaged height at t = 0, rho is a constant, t is time in seconds, and lambda is the characteristic time in seconds. A statistically significant correlation was found between those changes and the initial upward velocity of the spreading TFLL [H'(0) = dH(0)/dt] and R (r = 0.573; P = 0.003). CONCLUSIONS: This study demonstrated that the time-dependent changes of TFLL spread are compatible with the Voigt model of viscoelasticity and that the initial velocity of TFLL spread after a blink decreased in proportion to the decrease of tear volume. There is potential interest in using this parameter to diagnose and evaluate the severity of aqueous tear deficiency.


Assuntos
Síndromes do Olho Seco/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lágrimas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Interferometria , Luz , Masculino , Pessoa de Meia-Idade , Reologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...