Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3376, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643246

RESUMO

We theoretically describe and experimentally demonstrate a graphene-integrated metasurface structure that enables electrically-tunable directional control of thermal emission. This device consists of a dielectric spacer that acts as a Fabry-Perot resonator supporting long-range delocalized modes bounded on one side by an electrostatically tunable metal-graphene metasurface. By varying the Fermi level of the graphene, the accumulated phase of the Fabry-Perot mode is shifted, which changes the direction of absorption and emission at a fixed frequency. We directly measure the frequency- and angle-dependent emissivity of the thermal emission from a fabricated device heated to 250 °C. Our results show that electrostatic control allows the thermal emission at 6.61 µm to be continuously steered over 16°, with a peak emissivity maintained above 0.9. We analyze the dynamic behavior of the thermal emission steerer theoretically using a Fano interference model, and use the model to design optimized thermal steerer structures.

2.
Adv Mater ; 36(24): e2311559, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520395

RESUMO

It is shown that structural disorder-in the form of anisotropic, picoscale atomic displacements-modulates the refractive index tensor and results in the giant optical anisotropy observed in BaTiS3, a quasi-1D hexagonal chalcogenide. Single-crystal X-ray diffraction studies reveal the presence of antipolar displacements of Ti atoms within adjacent TiS6 chains along the c-axis, and threefold degenerate Ti displacements in the a-b plane. 47/49Ti solid-state NMR provides additional evidence for those Ti displacements in the form of a three-horned NMR lineshape resulting from a low symmetry local environment around Ti atoms. Scanning transmission electron microscopy is used to directly observe the globally disordered Ti a-b plane displacements and find them to be ordered locally over a few unit cells. First-principles calculations show that the Ti a-b plane displacements selectively reduce the refractive index along the ab-plane, while having minimal impact on the refractive index along the chain direction, thus resulting in a giant enhancement in the optical anisotropy. By showing a strong connection between structural disorder with picoscale displacements and the optical response in BaTiS3, this study opens a pathway for designing optical materials with high refractive index and functionalities such as large optical anisotropy and nonlinearity.

3.
ACS Nano ; 17(22): 22642-22655, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37963265

RESUMO

Upconversion of near-infrared light into the visible has achieved limited success in applications due to the difficulty of creating solid-state films with high external quantum efficiency (EQE). Recent developments have expanded the range of relevant materials for solid-state triplet-triplet annihilation upconversion through the use of a charge-transfer state sensitization process. Here, we report the single-step solution-processed deposition of a bulk heterojunction upconversion film using organic semiconductors. The use of a bulk heterojunction thin film enables a high contact area between sensitizer and annihilator materials in this interface-triplet-generation mechanism and allows for a facile single-step deposition process. Demonstrations of multiple deposition and patterning methods on glass and flexible substrates show the promise of this materials system for solid-state upconversion applications.

4.
ACS Appl Mater Interfaces ; 15(41): 48716-48724, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812501

RESUMO

Passive daytime radiative cooling (PDRC) relies on simultaneous reflection of sunlight and radiation toward cold outer space. Current designs of PDRC coatings have demonstrated potential as eco-friendly alternatives to traditional electrical air conditioning (AC). While many features of PDRC have been individually optimized in different studies, for practical impact, it is essential for a system to demonstrate excellence in all essential aspects, like the materials that nature has created. We propose a bioinspired PDRC structure templated by bicontinuous interfacially jammed emulsion gels (bijels) that possesses excellent cooling, thinness, tunability, scalability, and mechanical robustness. The unique bicontinuous disordered structure captures key features of Cyphochilus beetle scales, enabling a thin (130 µm) bijel PDRC coating to achieve high solar reflectance (≳0.97) and high longwave-infrared (LWIR) emissivity (≳0.93), resulting in a subambient temperature drop of ∼5.6 °C under direct sunlight. We further demonstrate switchable cooling inspired by the exoskeleton of the Hercules beetle and mechanical robustness in analogy to spongy bone structures.

5.
Adv Mater ; 35(42): e2303588, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37529860

RESUMO

Materials with large birefringence (Δn, where n is the refractive index) are sought after for polarization control (e.g., in wave plates, polarizing beam splitters, etc.), nonlinear optics, micromanipulation, and as a platform for unconventional light-matter coupling, such as hyperbolic phonon polaritons. Layered 2D materials can feature some of the largest optical anisotropy; however, their use in most optical systems is limited because their optical axis is out of the plane of the layers and the layers are weakly attached. This work demonstrates that a bulk crystal with subtle periodic modulations in its structure-Sr9/8 TiS3 -is transparent and positive-uniaxial, with extraordinary index ne = 4.5 and ordinary index no = 2.4 in the mid- to far-infrared. The excess Sr, compared to stoichiometric SrTiS3 , results in the formation of TiS6 trigonal-prismatic units that break the chains of face-sharing TiS6 octahedra in SrTiS3 into periodic blocks of five TiS6 octahedral units. The additional electrons introduced by the excess Sr form highly oriented electron clouds, which selectively boost the extraordinary index ne and result in record birefringence (Δn > 2.1 with low loss). The connection between subtle structural modulations and large changes in refractive index suggests new categories of anisotropic materials and also tunable optical materials with large refractive-index modulation.

6.
Nano Lett ; 23(15): 6852-6858, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499230

RESUMO

Laser sails propelled by gigawatt-scale ground-based laser arrays have the potential to reach relativistic speeds, traversing the solar system in hours and reaching nearby stars in years. Here, we describe the danger interplanetary dust poses to the survival of a laser sail during its acceleration phase. We show through multiphysics simulations how localized heating from a single optically absorbing dust particle on the sail can initiate a thermal runaway process that rapidly spreads and destroys the entire sail. We explore potential mitigation strategies, including increasing the in-plane thermal conductivity of the sail to reduce the peak temperature at hot spots and isolating the absorptive regions of the sail that can burn away individually.

7.
Adv Mater ; 35(28): e2301208, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37186328

RESUMO

Label-free and nondestructive mid-infrared vibrational hyperspectral imaging is an essential tissue analysis tool, providing spatially resolved biochemical information critical to understanding physiological and pathological processes. However, the chemically complex and spatially heterogeneous composition of tissue specimens and the inherently weak interaction of infrared light with biomolecules limit the analytical performance of infrared absorption spectroscopy. Here, an advanced mid-infrared spectrochemical tissue imaging modality is introduced using metasurfaces that support strong surface-localized electromagnetic fields to capture quantitative molecular maps of large-area murine brain tissue sections. The approach leverages polarization-multiplexed multi-resonance plasmonic metasurfaces to simultaneously detect various functional biomolecules. The surface-enhanced mid-infrared spectral imaging method eliminates the non-specific effects of bulk tissue morphology on quantitative spectral analysis and improves chemical selectivity. This study shows that metasurface enhancement increases the retrieval of amide I and II bands associated with protein secondary structures. Moreover, it is demonstrated that plasmonic metasurfaces enhance the chemical contrast in infrared images and enable detection of ultrathin tissue regions that are not otherwise visible to conventional mid-infrared spectral imaging. While this work uses murine brain tissue sections, the chemical imaging method is well-suited for other tissue types, which broadens its potential impact for translational research and clinical histopathology.


Assuntos
Diagnóstico por Imagem , Proteínas , Animais , Camundongos , Espectrofotometria Infravermelho/métodos , Proteínas/análise
8.
Opt Express ; 30(21): 38458-38467, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258410

RESUMO

We found that temperature-dependent infrared spectroscopy measurements (i.e., reflectance or transmittance) using a Fourier-transform spectrometer can have substantial errors, especially for elevated sample temperatures and collection using an objective lens. These errors can arise as a result of partial detector saturation due to thermal emission from the measured sample reaching the detector, resulting in nonphysical apparent reduction of reflectance or transmittance with increasing sample temperature. Here, we demonstrate that these temperature-dependent errors can be corrected by implementing several levels of optical attenuation that enable convergence testing of the measured reflectance or transmittance as the thermal-emission signal is reduced, or by applying correction factors that can be inferred by looking at the spectral regions where the sample is not expected to have a substantial temperature dependence.

10.
Nano Lett ; 22(1): 6-13, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958595

RESUMO

An induced-transmission filter (ITF) uses an ultrathin metallic layer positioned at an electric-field node within a dielectric thin-film bandpass filter to select one transmission band while suppressing other bands that would have been present without the metal layer. We introduce a switchable mid-infrared ITF where the metal can be "switched on and off", enabling the modulation of the filter response from a single band to multiband. The switching is enabled by the reversible insulator-to-metal phase transition of a subwavelength film of vanadium dioxide (VO2). Our work generalizes the ITF─a niche type of bandpass filter─into a new class of tunable devices. Furthermore, our fabrication process─which begins with thin-film VO2 on a suspended membrane─enables the integration of VO2 into any thin-film assembly that is compatible with physical vapor deposition processes and is thus a new platform for realizing tunable thin-film filters.

11.
Langmuir ; 37(30): 9222-9231, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279965

RESUMO

Functionalization of diamond surfaces with TEMPO and other surface paramagnetic species represents one approach to the implementation of novel chemical detection schemes that make use of shallow quantum color defects such as silicon-vacancy (SiV) and nitrogen-vacancy (NV) centers. Yet, prior approaches to quantum-based chemical sensing have been hampered by the absence of high-quality surface functionalization schemes for linking radicals to diamond surfaces. Here, we demonstrate a highly controlled approach to the functionalization of diamond surfaces with carboxylic acid groups via all-carbon tethers of different lengths, followed by covalent chemistry to yield high-quality, TEMPO-modified surfaces. Our studies yield estimated surface densities of 4-amino-TEMPO of approximately 1.4 molecules nm-2 on nanodiamond (varying with molecular linker length) and 3.3 molecules nm-2 on planar diamond. These values are higher than those reported previously using other functionalization methods. The ζ-potential of nanodiamonds was used to track reaction progress and elucidate the regioselectivity of the reaction between ethenyl and carboxylate groups and surface radicals.

12.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33790008

RESUMO

A radiative vapor condenser sheds heat in the form of infrared radiation and cools itself to below the ambient air temperature to produce liquid water from vapor. This effect has been known for centuries, and is exploited by some insects to survive in dry deserts. Humans have also been using radiative condensation for dew collection. However, all existing radiative vapor condensers must operate during the nighttime. Here, we develop daytime radiative condensers that continue to operate 24 h a day. These daytime radiative condensers can produce water from vapor under direct sunlight, without active consumption of energy. Combined with traditional passive cooling via convection and conduction, radiative cooling can substantially increase the performance of passive vapor condensation, which can be used for passive water extraction and purification technologies.

13.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33833057

RESUMO

Structural characterization of biologically formed materials is essential for understanding biological phenomena and their enviro-nment, and for generating new bio-inspired engineering concepts. For example, nacre-the inner lining of some mollusk shells-encodes local environmental conditions throughout its formation and has exceptional strength due to its nanoscale brick-and-mortar structure. This layered structure, comprising alternating transparent aragonite (CaCO3) tablets and thinner organic polymer layers, also results in stunning interference colors. Existing methods of structural characterization of nacre rely on some form of cross-sectional analysis, such as scanning or transmission electron microscopy or polarization-dependent imaging contrast (PIC) mapping. However, these techniques are destructive and too time- and resource-intensive to analyze large sample areas. Here, we present an all-optical, rapid, and nondestructive imaging technique-hyperspectral interference tomography (HIT)-to spatially map the structural parameters of nacre and other disordered layered materials. We combined hyperspectral imaging with optical-interference modeling to infer the mean tablet thickness and its disorder in nacre across entire mollusk shells from red and rainbow abalone (Haliotis rufescens and Haliotis iris) at various stages of development. We observed that in red abalone, unexpectedly, nacre tablet thickness decreases with age of the mollusk, despite roughly similar appearance of nacre at all ages and positions in the shell. Our rapid, inexpensive, and nondestructive method can be readily applied to in-field studies.


Assuntos
Exoesqueleto/química , Gastrópodes/metabolismo , Nácar/análise , Imagem Óptica/métodos , Exoesqueleto/metabolismo , Animais , Gastrópodes/citologia , Imagem Óptica/instrumentação , Imagem Óptica/normas , Sensibilidade e Especificidade
14.
Nano Lett ; 20(12): 8483-8486, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33197190

RESUMO

We propose a new type of reflective polarizer based on polarization-dependent coupling to surface plasmon polaritons (SPPs) from free space. This inexpensive polarizer is relatively narrowband but features an extinction ratio of up to 1000 with efficiency of up to 95% for the desired polarization (numbers from a calculation) and thus can be stacked to achieve extinction ratios of 106 or more. As a proof of concept, we experimentally realized a polarizer based on nanoporous aluminum oxide that operates around a wavelength of 10.6 µm, corresponding to the output of a CO2 laser, using aluminum anodization, a low-cost electrochemical process.

15.
Nat Rev Mater ; 5(4): 253-256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218994

RESUMO

The first online-only meeting in photonics, held on 13 January 2020, was a resounding success, with 1100 researchers participating remotely to discuss the latest advances in photonics. Here, the organizers share their tips and advice on how to organize an online conference.

16.
Proc Natl Acad Sci U S A ; 116(52): 26402-26406, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31848248

RESUMO

Thermal emission is the process by which all objects at nonzero temperatures emit light and is well described by the Planck, Kirchhoff, and Stefan-Boltzmann laws. For most solids, the thermally emitted power increases monotonically with temperature in a one-to-one relationship that enables applications such as infrared imaging and noncontact thermometry. Here, we demonstrated ultrathin thermal emitters that violate this one-to-one relationship via the use of samarium nickel oxide (SmNiO3), a strongly correlated quantum material that undergoes a fully reversible, temperature-driven solid-state phase transition. The smooth and hysteresis-free nature of this unique insulator-to-metal phase transition enabled us to engineer the temperature dependence of emissivity to precisely cancel out the intrinsic blackbody profile described by the Stefan-Boltzmann law, for both heating and cooling. Our design results in temperature-independent thermally emitted power within the long-wave atmospheric transparency window (wavelengths of 8 to 14 µm), across a broad temperature range of ∼30 °C, centered around ∼120 °C. The ability to decouple temperature and thermal emission opens a gateway for controlling the visibility of objects to infrared cameras and, more broadly, opportunities for quantum materials in controlling heat transfer.

17.
Light Sci Appl ; 8: 51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231517

RESUMO

We demonstrate the generation of nanosecond mid-infrared pulses via fast modulation of thermal emissivity enabled by the absorption of visible pump pulses in unpatterned silicon and gallium arsenide. The free-carrier dynamics in these materials result in nanosecond-scale modulation of thermal emissivity, which leads to nanosecond pulsed thermal emission. To our knowledge, the nanosecond thermal-emissivity modulation in this work is three orders of magnitude faster than what has been previously demonstrated. We also indirectly observed subnanosecond thermal pulses from hot carriers in semiconductors. The experiments are well described by our multiphysics model. Our method of converting visible pulses into the mid infrared using modulated emissivity obeys different scaling laws and can have significant wavelength tunability compared to approaches based on conventional nonlinearities.

18.
Nat Mater ; 18(9): 920-930, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31133732

RESUMO

Thermal emission is a ubiquitous and fundamental process by which all objects at non-zero temperatures radiate electromagnetic energy. This process is often assumed to be incoherent in both space and time, resulting in broadband, omnidirectional light emission toward the far field, with a spectral density related to the emitter temperature by Planck's law. Over the past two decades, there has been considerable progress in engineering the spectrum, directionality, polarization and temporal response of thermally emitted light using nanostructured materials. This Review summarizes the basic physics of thermal emission, lays out various nanophotonic approaches to engineer thermal emission in the far field, and highlights several applications, including energy harvesting, lighting and radiative cooling.

19.
Nat Commun ; 10(1): 1020, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833569

RESUMO

Miniaturized spectrometers have significant potential for portable applications such as consumer electronics, health care, and manufacturing. These applications demand low cost and high spectral resolution, and are best enabled by single-shot free-space-coupled spectrometers that also have sufficient spatial resolution. Here, we demonstrate an on-chip spectrometer that can satisfy all of these requirements. Our device uses arrays of photodetectors, each of which has a unique responsivity with rich spectral features. These responsivities are created by complex optical interference in photonic-crystal slabs positioned immediately on top of the photodetector pixels. The spectrometer is completely complementary metal-oxide-semiconductor (CMOS) compatible and can be mass produced at low cost.

20.
Sci Rep ; 8(1): 11971, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097592

RESUMO

To see color, the human visual system combines the response of three types of cone cells in the retina-a compressive process that discards a significant amount of spectral information. Here, we present designs based on thin-film optical filters with the goal of enhancing human color vision by breaking its inherent binocular redundancy, providing different spectral content to each eye. We fabricated a set of optical filters that "splits" the response of the short-wavelength cone between the two eyes in individuals with typical trichromatic vision, simulating the presence of approximately four distinct cone types. Such an increase in the number of effective cone types can reduce the prevalence of metamers-pairs of distinct spectra that resolve to the same tristimulus values. This technique may result in an enhancement of spectral perception, with applications ranging from camouflage detection and anti-counterfeiting to new types of artwork and data visualization.


Assuntos
Visão de Cores , Disparidade Visual , Visão Binocular , Humanos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...