Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 21(21): 9747-55, 2005 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-16207062

RESUMO

Micelle transformations upon metalation (i.e., incorporation of metal compounds and metal nanoparticle formation) in poly(methoxy hexa(ethylene glycol) methacrylate)-block-poly((2-(diethylamino)ethyl methacrylate)), PHEGMA-b-PDEAEMA, solutions have been studied using transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). Three different methods for the formation of metalated micelles are compared: (A) dissolution of the block copolymers in pure water followed by incorporation of platinic acid (H(2)PtCl(6).6H(2)O), (B) micellization in acidic molecular solutions of block copolymers induced by interaction of the protonated amino groups with the PtCl(6)(2)(-) ions, and (C) incorporation of metal species in pH-induced micelles. The latter method leads to well-defined metalated micelles of 22-25 nm diameter containing nanoparticles with diameters of 1.3-1.5 nm. No nanoparticle aggregation is observed. Good agreement is obtained for the sizes of the platinic acid-containing micelles assessed by TEM and PCS.


Assuntos
Metais , Micelas , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Luz , Microscopia Eletrônica , Modelos Moleculares , Peso Molecular , Espalhamento de Radiação
2.
Faraday Discuss ; 128: 129-47, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15658771

RESUMO

Dynamic light scattering, potentiometric titration, transmission electron microscopy and atomic force microscopy have been used to investigate the micellar behaviour and metal-nanoparticle formation in poly(ethylene oxide)-block-poly(2-vinylpyridine), PEO-b-P2VP, poly(hexa(ethylene glycol) methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate), PHEGMA-b-PDEAEMA, and PEO-b-PDEAEMA amphiphilic diblock copolymers in water. The hydrophobic block of these copolymers (P2VP or PDEAEMA) is pH-sensitive: at low pH it can be protonated and becomes partially or completely hydrophilic leading to molecular solubility whereas at higher pH micelles are formed. These micelles consist of a P2VP or PDEAEMA core and a PEO or PHEGMA corona, respectively, where the core forming amine units can incorporate metal compounds due to coordination. The metal compounds (e.g., H2PtCl6, K2PtCl6) can either be introduced in a micellar solution, where they are incorporated within the micelle core via coordination with functional groups, or can be added to a unimer solution at low pH, where they lead to a metal-induced micellization. In these micellar nanoreactors, metal nanoparticles nucleate and grow upon reduction with sizes in the range of a few nanometers as observed by TEM. The effect of the metal incorporation method on the characteristics of the micelles and of the synthesized nanoparticles is investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...