Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751159

RESUMO

Any release of radioactive cesium-137, due to unintentional accidents in nuclear plants, represents a dangerous threat for human health and the environment. Prussian blue has been widely studied and used as an antidote for humans exposed to acute internal contamination by Cs-137, due to its ability to act as a selective adsorption agent and to its negligible toxicity. In the present work, the synthesis protocol has been revisited avoiding the use of organic solvents to obtain Prussian blue nanoparticles with morphological and textural properties, which positively influence its Cs+ binding capacity compared to a commercially available Prussian blue sample. The reduction of the particle size and the increase in the specific surface area and pore volume values compared to the commercial Prussian blue reference led to a more rapid uptake of caesium in simulated enteric fluid solution (+35% after 1 h of contact). Then, after 24 h of contact, both solids were able to remove >98% of the initial Cs+ content. The Prussian blue nanoparticles showed a weak inhibition of the bacterial luminescence in the aqueous phase and no chronic detrimental toxic effects.


Assuntos
Césio/química , Descontaminação/métodos , Ferrocianetos/química , Nanopartículas/química , Adsorção , Bioensaio , Líquidos Corporais/química , Radioisótopos de Césio/química , Fenômenos Químicos , Humanos , Nanopartículas/ultraestrutura , Soluções , Análise Espectral
2.
Sci Pharm ; 81(1): 15-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23641327

RESUMO

The novel heterocyclization of 5-(2-aminophenyl)-1H-tetrazole with potassium ethylxanthogenate or carbon disulfide was proposed. The potassium salt of the tetrazolo[1,5-c]quinazoline-5-thione was subsequently modified by alkylation with proper halogen derivatives to (tetrazolo[1,5-c]quinazolin-5-ylthio)alkyls, N,N-dialkylethylamines, 1-aryl-2-ethanones, 1-(alkyl)aryl-2-ethanols, carboxylic acids, and esters. The structures of all newly synthesized compounds were confirmed by FT-IR, UV-vis, LC-MS, (1)H, (13)C NMR, and elemental analysis data. The substances were screened for antibacterial and antifungal activities (100 µg) against Escherichia coli, Staphylococcus aureus, Enterobacter aerogenes, Entrococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans. Preliminary bioluminescence inhibition tests against Photobacterium leiognathi Sh1 showed that substances 5.2-5.4, 6.1, 7.1 with ethanone or carboxylic acid substituents showed toxicity against bacteria cells. The substances chosen by the US National Cancer Institute (NCI) were screened for their ability to inhibit 60 different human tumor cell lines, where 2-(tetrazolo[1,5-c]quinazolin-5-ylthio)-1-(4-tolyl)ethanone (5.2), 3-(tetrazolo[1,5-c]quinazolin-5-ylthio)propanoic and related 3-metyl-butanoic acids (6.2, 6.3), and ethyl tetrazolo[1,5-c]quinazolin-5-ylthio)acetate (7.2) showed lethal antitumor activity (1.0 µM) against the acute lymphoblastic leukemia cell line (CCRF-CEM), and substances 5.2 and 6.3 exhibited moderate anticancer properties inhibiting growth of the leukemia MOLT-4 and HL06-(TB) cell lines. The moderate antitumor activity was demonstrated in 1-(2,5-dimethoxyphenyl)-2-(tetrazolo[1,5-c]quinazolin-5-ylthio)ethanone (5.4) against the CNS cancer cell line SNB-75. Comparing the docking mode of the Gefitinib and synthesised substances on the ATP binding site of EGFR, it could be assumed that these compounds might act in the same way. The results of the investigation could be considered as a useful base for future development of potent antimicrobials and antitumor agents among tetrazolo[1,5-c]quinazoline-5-thione S-derivatives.

3.
Sci Pharm ; 80(4): 837-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23264935

RESUMO

The series of novel N-R-2-[(3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)thio]acetamides with thiazole and thiadiazole fragments in a molecule were obtained by alkylation of potassium salts 1.1-1.4 by N-hetaryl-2-chloroacetamides and by aminolysis of activated acids 2.1-2.4 with N,N'-carbonyldiimidazole (CDI). The structures of compounds were determined by IR, (1)H NMR, MS, and EI-MS analysis. The results of cytotoxicity evaluated by the bioluminescence inhibition of bacterium Photobacterium leiognathi, Sh1 showed that the compounds have considerable cytotoxicity. The synthesized compounds were tested for anticancer activity in NCI against 60 cell lines. Among the highly active compounds 3.1, 3.2, and 6.5, 2-[(3-methyl-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)thio]-N-(1,3-thiazol-2-yl)acetamide (3.1) was found to be the most active anticancer agent against the cell lines of colon cancer (GI(50) at 0.41-0.69 µM), melanoma (GI(50) 0.48-13.50 µM), and ovarian cancer (GI(50) 0.25-5.01 µM). The structure-activity relationship (SAR-analysis) was discussed.

4.
J Basic Microbiol ; 44(3): 178-84, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15162391

RESUMO

Light-emitting bacteria are the most abundant and widespread luminescent organisms. Most species of such bacteria live in marine environments. However, until recently, biological role of bacterial luminescence remained unknown. Recent studies indicated that light produced in bacterial cells may stimulate DNA repair. Therefore, it is not surprising that agents that cause DNA damage induce expression of lux genes. Moreover, it was proposed previously that bacterial luciferases may be involved in detoxification of reactive oxygen species. Recently, this hypothesis was confirmed experimentally. Here we investigated effects of hydrogen peroxide on light emission by various strains of luminescent bacteria. We found that luminescence of strains with luciferase of fast kinetics of reaction decreased at considerably lower concentrations of H2O2 than that of strains with luciferase of the slow kinetics. The action (either direct or indirect) of luciferases as anti-oxidants seemed to be independent of activity of catalase, which was found to be different in various strains. Therefore, it seems that luciferases of the slow kinetics are more efficient in detoxification of reactive oxygen species than those of the fast kinetics.


Assuntos
Peróxido de Hidrogênio/farmacologia , Luciferases/metabolismo , Luminescência , Photobacterium/metabolismo , Vibrio/metabolismo , Catalase/metabolismo , Medições Luminescentes , Oxidantes/farmacologia , Photobacterium/efeitos dos fármacos , Photobacterium/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Água do Mar/microbiologia , Vibrio/efeitos dos fármacos , Vibrio/isolamento & purificação , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...