Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 30(16): 1469-1483, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33902111

RESUMO

Duplication/triplication mutations of the SNCA locus, encoding alpha-synuclein (ASYN), and loss of function mutations in Nurr1, a nuclear receptor guiding midbrain dopaminergic neuron development, are associated with familial Parkinson's disease (PD). As we age, the expression levels of these two genes in midbrain dopaminergic neurons follow opposite directions and ASYN expression increases while the expression of Nurr1 decreases. We investigated the effect of ASYN and Nurr1 age-related expression alterations in the pathogenesis of PD by coupling Nurr1 hemizygous with ASYN(s) (heterozygote) or ASYN(d) (homozygote) transgenic mice. ASYN(d)/Nurr1+/- (2-hit) mice, contrary to the individual genetic traits, developed phenotypes consistent with dopaminergic dysfunction. Aging '2-hit' mice manifested kyphosis, severe rigid paralysis, L-DOPA responsive movement impairment and cachexia and died prematurely. Pathological abnormalities of phenotypic mice included SN neuron degeneration, extensive neuroinflammation and enhanced ASYN aggregation. Mice with two wt Nurr1 alleles [ASYN(d)/Nurr1+/+] or with reduced ASYN load [ASYN(s)/Nurr1+/-] did not develop the phenotype or pathology. Critically, we found that aging ASYN(d), in contrast to ASYN(s), mice suppress Nurr1-protein levels in a brain region-specific manner, which in addition to Nurr1 hemizygosity is necessary to instigate PD pathogenesis. Our experiments demonstrate that ASYN-dependent PD-related pathophysiology is mediated at least in part by Nurr1 down-regulation.


Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Doença de Parkinson , alfa-Sinucleína , Animais , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Camundongos , Camundongos Transgênicos , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
J Cell Mol Med ; 25(7): 3216-3225, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33656806

RESUMO

Craniosynostosis refers to the premature fusion of one or more cranial sutures leading to skull shape deformities and brain growth restriction. Among the many factors that contribute to abnormal suture fusion, mechanical forces seem to play a major role. Nevertheless, the underlying mechanobiology-related mechanisms of craniosynostosis still remain unknown. Understanding how aberrant mechanosensation and mechanotransduction drive premature suture fusion will offer important insights into the pathophysiology of craniosynostosis and result in the development of new therapies, which can be used to intervene at an early stage and prevent premature suture fusion. Herein, we provide evidence for the first time on the role of polycystin-1 (PC1), a key protein in cellular mechanosensitivity, in craniosynostosis, using primary cranial suture cells isolated from patients with trigonocephaly and dolichocephaly, two common types of craniosynostosis. Initially, we showed that PC1 is expressed at the mRNA and protein level in both trigonocephaly and dolichocephaly cranial suture cells. Followingly, by utilizing an antibody against the mechanosensing extracellular N-terminal domain of PC1, we demonstrated that PC1 regulates runt-related transcription factor 2 (RUNX2) activation and osteocalcin gene expression via extracellular signal-regulated kinase (ERK) signalling in our human craniosynostosis cell model. Altogether, our study reveals a novel mechanotransduction signalling axis, PC1-ERK-RUNX2, which affects osteoblastic differentiation in cranial suture cells from trigonocephaly and dolichocephaly patients.


Assuntos
Craniossinostoses/metabolismo , Canais de Cátion TRPP/metabolismo , Células Cultivadas , Criança , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Mecanotransdução Celular , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Canais de Cátion TRPP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...