Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(9): 098101, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489655

RESUMO

Understanding nanoscale mechanisms responsible for the recently discovered ferroelectric nematics can be helped by direct visualization of self-assembly of strongly polar molecules. Here, we report on scanning tunneling microscopy studies of monomolecular layers of a ferroelectric nematic liquid crystal on a reconstructed Au(111) surface. The monolayers are obtained by deposition from a solution at ambient conditions. The adsorbed ferroelectric nematic molecules self-assemble into regular rows with tilted orientation, resembling a layered structure of a smectic C. Remarkably, each molecular dipole in this architecture is oriented along the same direction giving rise to polar ferroelectric ordering.

2.
Angew Chem Int Ed Engl ; 63(18): e202401291, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38445723

RESUMO

The transmission of chiral information between the molecular, meso and microscopic scales is a facet of biology that remains challenging to understand mechanistically and to mimic with artificial systems. Here we demonstrate that the dynamic change in the expression of the chirality of a rotaxane can be transduced into a change in pitch of a soft matter system. Shuttling the position of the macrocycle from far-away-from to close-to a point-chiral center on the rotaxane axle changes the expression of the chiral information that is transmitted across length scales; from nanometer scale constitutional chirality that affects the conformation of the macrocycle, to the centimeter scale chirality of the liquid crystal phase, significantly changing the pitch length of the chiral nematic structure.

3.
Chem ; 8(8): 2290-2300, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36003886

RESUMO

Microscopic motility is a property that emerges from systems of interacting molecules. Unraveling the mechanisms underlying such motion requires coupling the chemistry of molecules with physical processes that operate at larger length scales. Here, we show that photoactive micelles composed of molecular switches gate the autonomous motion of oil droplets in water. These micelles switch from large trans-micelles to smaller cis-micelles in response to light, and only the trans-micelles are effective fuel for the motion. Ultimately, it is this light that controls the movement of the droplets via the photochemistry of the molecules composing the micelles used as fuel. Notably, the droplets evolve positive photokinetic movement, and in patchy light environments, they preferentially move toward peripheral areas as a result of the difference in illumination conditions at the periphery. Our findings demonstrate that engineering the interplay between molecular photo-chemistry and microscopic motility allows designing motile systems rationally.

4.
Nature ; 605(7908): 37-38, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508770
5.
Nat Rev Chem ; 6(6): 377-388, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-37117430

RESUMO

Motility is the capacity for living organisms to move autonomously and with purpose, and is essential to life. The transition from abiotic chemistry into motile cellular compartments has yet to be understood, but motile behaviour likely followed chemical evolution because primeval cell survival depended on scouting for resources effectively. Minimalistic motile systems provide an experimental framework to delineate the emergence mechanisms of such an evolutionary asset. In this Review, we discuss frontier developments in controlling the movement of droplets in lipid systems, in particular, chemotactic behaviours driven by fluctuations in interfacial tension, because of its simple mechanism and prebiotic relevance. Although most efforts have focused on designing oil droplet motility in lipid-rich aqueous solutions, we highlight that water droplets can also move in lipid-enriched oils. First, we describe how droplets evolve chemotactic motility in lipid systems. Next, we review how these oil droplets can adapt their movement to illumination conditions. Finally, we discuss examples where chemical reactivity brings complexity to motility. This work contributes to systems chemistry, where chemical reactions combined with physicochemical phenomena can yield new functions, such that a limited set of molecules can promote complex movement at larger functional scales by following the rules of molecular chemistry.


Assuntos
Evolução Química , Óleos , Óleos/química , Tensão Superficial
6.
Nat Commun ; 12(1): 2959, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011926

RESUMO

Self-reproducing molecules abound in nature where they support growth and motion of living systems. In artificial settings, chemical reactions can also show complex kinetics of reproduction, however integrating self-reproducing molecules into larger chemical systems remains a challenge towards achieving higher order functionality. Here, we show that self-reproducing lipids can initiate, sustain and accelerate the movement of octanol droplets in water. Reciprocally, the chemotactic movement of the octanol droplets increases the rate of lipid reproduction substantially. Reciprocal coupling between bond-forming chemistry and droplet motility is thus established as an effect of the interplay between molecular-scale events (the self-reproduction of lipid molecules) and microscopic events (the chemotactic movement of the droplets). This coupling between molecular chemistry and microscopic motility offers alternative means of performing work and catalysis in micro-heterogeneous environments.

7.
ACS Appl Mater Interfaces ; 13(3): 4777-4784, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33428396

RESUMO

Nano- and micro-actuating systems are promising for application in microfluidics, haptics, tunable optics, and soft robotics. Surfaces capable to change their topography at the nano- and microscale on demand would allow control over wettability, friction, and surface-driven particle motility. Here, we show that light-responsive cholesteric liquid crystal (LC) networks undergo a waving motion of their surface topography upon irradiation with light. These dynamic surfaces are fabricated with a maskless one-step procedure, relying on the liquid crystal alignment in periodic structures upon application of a weak electric field. The geometrical features of the surfaces are controlled by tuning the pitch of the liquid crystal. Pitch control by confinement allows engineering one-dimensional (1D) and two-dimensional (2D) structures that wave upon light exposure. This work demonstrates the potential that self-organizing systems might have for engineering dynamic materials, and harnessing the functionality of molecules to form dynamic surfaces, with nanoscale precision over their waving motion.

8.
Adv Mater ; 32(47): e2004420, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33073425

RESUMO

Unravelling the rules of molecular motion is a contemporary challenge that promises to support the development of responsive materials and is likely to enhance the understanding of functional motion. Advances in integrating light-driven molecular motors in soft matter have led to the design and realization of chiral nematic (cholesteric) liquid crystals that can respond to light with modification of their helical pitch, and also with helix inversion. Under illumination, these chiral liquid crystals convert from one helical geometry to another. Here, a series of light-driven molecular motors that feature a rich configurational landscape is presented, specifically which involves three stable chiral states. The succession of chiral structures involved in the motor cycle is transmitted at higher structural levels, as the cholesteric liquid crystals that are formed can interconvert between helices of opposite handedness, reversibly. In these materials, the dynamic features of the motors are thus expressed at the near-macroscopic, functional level, into addressable colors that can be used in advanced materials for tunable optics and photonics.

9.
Nat Chem ; 12(10): 939-944, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747756

RESUMO

Transferring structural information from the nanoscale to the macroscale is a promising strategy for developing adaptive and dynamic materials. Here we demonstrate that the knotting and unknotting of a molecular strand can be used to control, and even invert, the handedness of a helical organization within a liquid crystal. An oligodentate tris(2,6-pyridinedicarboxamide) strand with six point-chiral centres folds into an overhand knot of single handedness upon coordination to lanthanide ions, both in isotropic solutions and in liquid crystals. In achiral liquid crystals, dopant knotted and unknotted strands induce supramolecular helical organizations of opposite handedness, with dynamic switching achievable through in situ knotting and unknotting events. Tying the molecular knot transmits information regarding asymmetry across length scales, from Euclidean point chirality (constitutional chirality) via molecular entanglement (conformation) to liquid-crystal (centimetre-scale) chirality. The magnitude of the effect induced by the tying of the molecular knots is similar to that famously used to rotate a glass rod on the surface of a liquid crystal by synthetic molecular motors.

10.
Nat Commun ; 10(1): 5238, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748502

RESUMO

The physico-chemical processes supporting life's purposeful movement remain essentially unknown. Self-propelling chiral droplets offer a minimalistic model of swimming cells and, in surfactant-rich water, droplets of chiral nematic liquid crystals follow the threads of a screw. We demonstrate that the geometry of their trajectory is determined by both the number of turns in, and the handedness of, their spiral organization. Using molecular motors as photo-invertible chiral dopants allows converting between right-handed and left-handed trajectories dynamically, and droplets subjected to such an inversion reorient in a direction that is also encoded by the number of spiral turns. This motile behavior stems from dynamic transmission of chirality, from the artificial molecular motors to the liquid crystal in confinement and eventually to the helical trajectory, in analogy with the chirality-operated motion and reorientation of swimming cells and unicellular organisms.


Assuntos
Cristais Líquidos , Movimento , Orientação Espacial , Estereoisomerismo , Tensoativos , Água
11.
Nat Commun ; 10(1): 4819, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645565

RESUMO

The motion of artificial molecular machines has been amplified into the shape transformation of polymer materials that have been compared to muscles, where mechanically active molecules work together to produce a contraction. In spite of this progress, harnessing cooperative molecular motion remains a challenge in this field. Here, we show how the light-induced action of artificial molecular switches modifies not only the shape but also, simultaneously, the stiffness of soft materials. The heterogeneous design of these materials features inclusions of free liquid crystal in a liquid crystal polymer network. When the magnitude of the intrinsic interfacial tension is modified by the action of the switches, photo-stiffening is observed, in analogy with the mechanical response of activated muscle fibers, and in contrast to melting mechanisms reported so far. Mechanoadaptive materials that are capable of active tuning of rigidity will likely contribute to a bottom-up approach towards human-friendly and soft robotics.


Assuntos
Órgãos Artificiais , Dureza/efeitos da radiação , Cristais Líquidos/química , Fenômenos Mecânicos , Fibras Musculares Esqueléticas , Músculo Esquelético , Polímeros/química , Raios Ultravioleta , Cristais Líquidos/efeitos da radiação , Contração Muscular , Polímeros/efeitos da radiação , Estresse Mecânico
12.
Small ; 15(39): e1902419, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31389175

RESUMO

Nanoparticles tend to aggregate once integrated into soft matter and consequently, self-assembling nanoparticles into large-scale, regular, well-defined, and ultimately chiral patterns remains an ongoing challenge toward the design and realization of organized superstructures of nanoparticles. The patterns of nanoparticles that are reported in liquid crystals so far are all static, and this lack of responsiveness extends to assemblies of nanoparticles formed in topological singularities and other localized structures of anisotropic matter. Here, it is shown that gold nanoparticles form spiral superstructures in polygonal fields of cholesteric liquid crystals. Moreover, when the cholesteric liquid crystals incorporate molecular photoswitches in their composition, the pitch of the nanoparticulate spirals follows the light-induced reorganization of the cholesteric liquid crystals. These experimental findings indicate that chiral liquid crystals can be used as chiral and dynamic templates for soft photonic nanomaterials. Controlling the geometry of these spirals of nanoparticles will ultimately allow modulating the plasmonic signature of hybrid and chiral systems.

14.
ACS Appl Mater Interfaces ; 11(11): 10895-10904, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30777420

RESUMO

The future of adaptive materials will rely on transduction of molecular motion across increasing length scales, up to the macroscopic and functional level. In this context, liquid crystals have emerged as a promising amplification medium, in view of their long-range order and high sensitivity to external stimuli, and in particular, chiral liquid crystals have demonstrated widely tunable optical properties and invertible handedness. Here, we demonstrate that by applying weak electric fields, regular, periodic and light-tunable patterns can be formed spontaneously in cholesteric liquid crystals. These patterns can be used as light-tunable diffraction gratings for which the period, the diffraction efficiency, and the in-plane orientation of grating vector can be controlled precisely, reversibly, and independently. Such a photoregulation allows generating a variety of one- and two-dimensional complex diffractive patterns in a single material. Our data are also supported by modeling and theoretical calculations. Overall, the fine tunability of cholesteric materials doped with artificial molecular switches makes them attractive for optics and photonics.

15.
J Am Chem Soc ; 141(3): 1196-1200, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30624915

RESUMO

Interfacing molecular photoswitches with liquid crystal polymers enables the amplification of their nanoscale motion into macroscopic shape transformations. Typically, the mechanism responsible for actuation involves light-induced molecular disorder. Here, we demonstrate that bistable hydrazones can drive (chiral) shape transformations in liquid crystal polymer networks, with photogenerated polymer shapes displaying a long-term stability that mirrors that of the switches. The mechanism involves a photoinduced buildup of tension in the polymer, with a negligible influence on the liquid crystalline order. Hydrazone-doped liquid crystal systems thus diversify the toolbox available to the field of light-adaptive molecular actuators and hold promise in terms of soft robotics.

16.
Bioconjug Chem ; 29(7): 2215-2224, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29975051

RESUMO

Developing strategies to interfere with allosteric interactions in proteins not only promises to deepen our understanding of vital cellular processes but also allows their regulation using external triggers. Light is particularly attractive as a trigger being spatiotemporally selective and compatible with the physiological environment. Here, we engineered a hybrid protein in which irradiation with light opens a new allosteric communication route that is not inherent to the natural system. We select human serum albumin, a promiscuous protein responsible for transporting a variety of ligands in plasma, and show that by covalently incorporating a synthetic photoswitch to subdomain IA we achieve optical control of the ligand binding in subdomain IB. Molecular dynamics simulations confirm the allosteric nature of the interactions between IA and IB in the engineered protein. Specifically, upon illumination, photoconversion of the switch is found to correlate with a less-coordinated motion of the two subdomains and an increased flexibility of the binding pocket in subdomain IB, whose fluctuations are cooperatively enhanced by the presence of ligands, ultimately facilitating their release. Our combined experimental and computational work demonstrates how harnessing artificial molecular switches enables photoprogramming the allosteric regulation of binding activities in such a prominent protein.


Assuntos
Regulação Alostérica/efeitos da radiação , Luz , Albumina Sérica Humana/química , Sítios de Ligação , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica/efeitos da radiação , Engenharia de Proteínas
17.
Proc Natl Acad Sci U S A ; 115(17): 4334-4339, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29626129

RESUMO

Cholesteric liquid crystal (CLC) droplets exhibit nontrivial topological features, which are controlled by the ratio between the cholesteric pitch and the droplet radius. The radial spherical structure (RSS) is of particular interest, as it reveals an onion-like concentric organization of the cholesteric helices, leading to the expression of spherical Bragg microcavities. Using an overcrowded alkene-based unidirectional molecular motor as a dopant, we show that the topological defect structure in the droplet can be activated by illumination. By using appropriate molecular motor concentrations, light can either break the symmetry of topological defects (as observed for the bent-twisted bipolar structure), or it can induce inversion of handedness in an onion-like organization (in the case of RSS). This latter feature may pave the way toward alternative activation modes of lasers based on cholesteric droplets. By also studying CLC droplets once they have reached full photoconversion at photostationary state (PSS), we highlight that the strong influence of confinement on the droplets structure occurs to the same extent after the helix inversion event. Our results are interpreted in terms of numerical simulations of the droplets' structure, which shed light on the major role played by curvature close to the droplets' center, this latter one becoming dominant when the droplet radius is small.

18.
Nat Nanotechnol ; 13(4): 304-308, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29434262

RESUMO

Molecular machines operated by light have been recently shown to be able to produce oriented motion at the molecular scale1,2 as well as do macroscopic work when embedded in supramolecular structures3-5. However, any supramolecular movement irremediably ceases as soon as the concentration of the interconverting molecular motors or switches reaches a photo-stationary state6,7. To circumvent this limitation, researchers have typically relied on establishing oscillating illumination conditions-either by modulating the source intensity8,9 or by using bespoke illumination arrangements10-13. In contrast, here we report a supramolecular system in which the emergence of oscillating patterns is encoded at the molecular level. Our system comprises chiral liquid crystal structures that revolve continuously when illuminated, under the action of embedded light-driven molecular motors. The rotation at the supramolecular level is sustained by the diffusion of the motors away from a localized illumination area. Above a critical irradiation power, we observe a spontaneous symmetry breaking that dictates the directionality of the supramolecular rotation. The interplay between the twist of the supramolecular structure and the diffusion 14 of the chiral molecular motors creates continuous, regular and unidirectional rotation of the liquid crystal structure under non-equilibrium conditions.

19.
Nanoscale ; 10(8): 4123-4129, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29436545

RESUMO

Introduction of compartments with defined spaces inside a hydrogel network brings unique features, such as cargo quantification, stabilization and diminishment of burst release, which are all desired for biomedical applications. As a proof of concept, guest-modified cowpea chlorotic mottle virus (CCMV) particles and complementary guest-modified hydroxylpropyl cellulose (HPC) were non-covalently cross-linked through the formation of ternary host-guest complexes with cucurbit[8]uril (CB[8]). Furthermore, CCMV based virus-like particles (VLPs) loaded with tetrasulfonated zinc phthalocyanine (ZnPc) were prepared, with a loading efficiency up to 99%, which are subsequently successfully integrated inside the supramolecular hydrogel network. It was shown that compartments provided by protein cages not only help to quantify the loaded ZnPc cargo, but also improve the water solubility of ZnPc to avoid undesired aggregation. Moreover, the VLPs together with ZnPc cargo can be released in a controlled way without an initial burst release. The photodynamic effect of ZnPc molecules was retained after encapsulation of capsid protein and release from the hydrogel. This line of research suggests a new approach for sophisticated drug administration in supramolecular hydrogels.

20.
Macromol Rapid Commun ; 39(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28895267

RESUMO

Chiral azobenzenes can be used as photoswitchable dopants to control supramolecular helices in liquid crystals. However, the lack of thermal stability of the cis-isomer precludes envisioning the generation of long-lived supramolecular helices with light. Here, this study demonstrates thermally stable and axially chiral azobenzene switches that can be used as chiral dopants to create supramolecular helices from (achiral) nematic liquid crystals. Their trans-to-cis photoisomerization leads to a variation of helical twisting power that reaches up to 60%, and the helical superstructure that is engineered with light displays a relaxation time that reaches tens of hours. These results demonstrate that combining ortho-fluorination with axial chirality in molecular photoswitches constitutes an efficient strategy to promote long-lived helical states. Further, this approach shows potential to design supramolecular machines that are controlled by light entirely.


Assuntos
Compostos Azo/química , Cristais Líquidos/química , Halogenação , Substâncias Macromoleculares/química , Estrutura Molecular , Processos Fotoquímicos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...