Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029967

RESUMO

Para-hydroxybenzoate hydroxylase (PHBH) is a group A flavoprotein monooxygenase that hydroxylates p-hydroxybenzoate to protocatechuate (PCA). Despite intensive studies of Pseudomonas aeruginosa p-hydroxybenzoate hydroxylase (PaPobA), the catalytic reactions of extremely diverse putative PHBH isozymes remain unresolved. We analyzed the phylogenetic relationships of known and predicted PHBHs and identified eight divergent clades. Clade F contains a protein that lacks the critical amino acid residues required for PaPobA to generate PHBH activity. Among proteins in this clade, Xylophilus ampelinus PobA (XaPobA) preferred PCA as a substrate and is the first known natural PCA 5-hydroxylase (PCAH). Crystal structures and kinetic properties revealed similar mechanisms of substrate carboxy group recognition between XaPobA and PaPobA. The unique Ile75, Met72, Val199, Trp201, and Phe385 residues of XaPobA form the bottom of a hydrophobic cavity with a shape that complements the 3-and 4-hydroxy groups of PCA and its binding site configuration. An interaction between the δ-sulfur atom of Met210 and the aromatic ring of PCA is likely to stabilize XaPobA-PCA complexes. The 4-hydroxy group of PCA forms a hydrogen bond with the main chain carbonyl of Thr294. These modes of binding constitute a novel substrate recognition mechanism that PaPobA lacks. This mechanism characterizes XaPobA and sheds light on the diversity of catalytic mechanisms of PobA-type PHBHs and group A flavoprotein monooxygenases.


Assuntos
4-Hidroxibenzoato-3-Mono-Oxigenase , Pseudomonas , 4-Hidroxibenzoato-3-Mono-Oxigenase/metabolismo , Sítios de Ligação , Flavoproteínas/genética , Flavoproteínas/metabolismo , Cinética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Filogenia , Pseudomonas/enzimologia , Pseudomonas/metabolismo , Xylophilus/enzimologia
2.
Microbes Environ ; 38(6)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37866887

RESUMO

The Earth's microbial biosphere extends from ambient to extreme environments, including deep-sea hydrothermal vents and subseafloor habitats. Despite efforts to understand the physiological adaptations of these microbes, our knowledge is limited due to the technological challenges associated with reproducing in situ high temperature (HT)-high hydrostatic pressure (HHP) conditions and sampling HT-HHP cultures. In the present study, we developed a new high temperature and pressure (HTP) incubation system that enabled the maintenance of HT-HHP conditions while sampling incubation medium and mostly eliminated non-biological reactions, including hydrogen generation or the leakage of small gaseous molecules. The main characteristics of our system are (1) a chamber made of gold with gold-etched lid parts that suppress the majority of non-biological reactions, (2) the exceptional containment of dissolved gas, even small molecules, such as hydrogen, and (3) the sampling capacity of intra-chamber liquid without depressurization and the isobaric transfer of a culture to inoculate new medium. We initially confirmed the retention of dissolved hydrogen in the incubation container at 82°C and 20| |MPa for 9 days. Cultivation tests with an obligate hyperthermophilic piezophile (Pyrococcus yayanosii), hydrogenotrophic hyperthermophile (Archaeoglobus profundus), and heterotrophic hyperthermophile (Pyrococcus horikoshii) were successful based on growth monitoring and chemical ana-lyses. During HTP cultivation, we observed a difference in the duration of the lag phase of P. horikoshii, which indicated the potential effect of a pressure change on the physiology of piezophiles. The present results suggest the importance of a cultivation system designed and developed explicitly for HTP conditions with the capacity for sampling without depressurization of the entire system.


Assuntos
Archaea , Ecossistema , Temperatura , Pressão Hidrostática , Hidrogênio
3.
J Gen Appl Microbiol ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648467

RESUMO

Plant-derived phenolic gallic acid (GA) is an important raw material for antioxidants and food additives. Efforts to ferment GA using microbial processes have aimed at minimizing production costs and environmental load using enzymes that hydroxylate p-hydroxybenzoate and protocatechuate (PCA). Here, we found a p-hydroxybenzoate hydroxylase (PobA) in the bacterium Hylemonella gracilis NS1 (HgPobA) with 1.5-fold more hydroxylation activity than that from Pseudomonas aeruginosa PAO1 and thus converted PCA to GA more efficiently. The PCA hydroxylation activity of HgPobA was improved by introducing the amino acid substitutions L207V/Y393F or T302A/Y393F. These mutants had 2.9- and 3.7-fold lower Kmapp for PCA than wild-type HgPobA. An Escherichia coli strain that reinforces shikimate pathway metabolism and produces HgPobA when cultured for 60 h generated 0.27 g L-1 of GA. This is the first report of fermenting glucose to generate GA using a natural enzyme from the PobA family. The E. coli strain harboring the HgPobA L207V/Y393F mutant increased GA production to 0.56 g L-1. During the early stages of culture, GA was fermented at a 10-fold higher rate by a strain producing either HgPobA L207V/Y393F or T302A/Y393F compared with wild-type HgPobA, which agreed with the high kcatapp/Kmapp PCA values of this mutant. We enhanced a PobA isozyme and its PCA hydroxylating function to efficiently and cost-effectively ferment GA.

4.
Biosci Biotechnol Biochem ; 86(8): 1114-1121, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35612977

RESUMO

The aromatic diamine 2-(4-aminophenyl)ethylamine (4APEA) is a potential monomer for polymers and advanced materials. Here, 4APEA was produced by fermentation using genetically engineered Escherichia coli (Masuo et al.2016). Optimizing fed-batch cultures of this strain produced the highest reported yield to date of 4APEA (7.2%; 3.5 g/L versus glucose) within 72 h. Appropriate aeration was important to maximize production and avoid unfavorable 4APEA degradation. Fermented 4APEA was purified from culture medium and polymerized with methylene diphenyldiisocyanate and hexamethylene diisocyanate to produce polyureas PU-1 and PU-2, respectively. The decomposition temperatures for 10% weight loss (Td10) of PU-1 and PU-2 were 276 °C and 302 °C, respectively, and were comparable with that of other thermostable aromatic polyureas. This study is the first to synthesize polyureas from the microbial aromatic diamine. Their excellent thermostability will be useful for the industrial production of heat-resistant polymer materials.


Assuntos
Escherichia coli , Temperatura Alta , Diaminas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Glucose/metabolismo , Engenharia Metabólica , Fenetilaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...