Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38870264

RESUMO

Increased dietary phosphate consumption intensifies renal phosphate burden. Several mechanisms for phosphate-induced renal tubulointerstitial fibrosis have been reported. Considering the dual nature of phosphate as both a potential renal toxin and an essential nutrient for the body, kidneys may possess inherent protective mechanisms against phosphate overload, rather than succumbing solely to injury. However, there is limited understanding of such mechanisms. To identify these mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) analysis of the kidneys of control (Ctrl) and dietary phosphate-loaded (Phos) mice at a time point when the Phos group had not yet developed tubulointerstitial fibrosis. scRNA-seq analysis identified the highest number of differentially expressed genes (DEGs) in the clusters belonging to proximal tubular epithelial cells (PTECs). Based on these DEGs, in silico analyses suggested that the Phos group activated peroxisome proliferator-activated receptor alpha (PPAR-α) and fatty acid ß-oxidation (FAO) in the PTECs. This activation was further substantiated through various experiments, including the use of an FAO activity visualization probe. Compared to wild-type mice, Ppara knockout mice exhibited exacerbated tubulointerstitial fibrosis in response to phosphate overload. Experiments conducted with cultured PTECs demonstrated that activation of the PPAR-α/FAO pathway leads to improved cellular viability under high phosphate conditions. The Phos group mice showed a decreased serum concentration of free fatty acids, which are endogenous PPAR-α agonists. Instead, experiments using cultured PTECs revealed that phosphate directly activates the PPAR-α/FAO pathway. These findings indicate that noncanonical metabolic reprogramming via endogenous activation of the PPAR-α/FAO pathway in PTECs is essential to counteract phosphate toxicity.

2.
Am J Physiol Endocrinol Metab ; 325(5): E552-E561, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729022

RESUMO

Mitochondrial fatty acid ß-oxidation (FAO) plays a key role in energy homeostasis. Several FAO evaluation methods are currently available, but they are not necessarily suitable for capturing the dynamics of FAO in vivo at a cellular-level spatial resolution and seconds-level time resolution. FAOBlue is a coumarin-based probe that undergoes ß-oxidation to produce a fluorescent substrate, 7-hydroxycoumarin-3-(N-(2-hydroxyethyl))-carboxamide (7-HC). After confirming that 7-HC could be specifically detected using multiphoton microscopy at excitation/emission wavelength = 820/415-485 nm, wild-type C57BL/6 mice were randomly divided into control, pemafibrate, fasting (24 or 72 h), and etomoxir groups. These mice received a single intravenous injection of FAOBlue. FAO activities in the liver of these mice were visualized using multiphoton microscopy at 4.2 s/frame. These approaches could visualize the difference in FAO activities between periportal and pericentral hepatocytes in the control, pemafibrate, and fasting groups. FAO velocity, which was expressed by the maximum slope of the fluorescence intensity curve, was accelerated in the pemafibrate and 72-h fasting groups both in the periportal and the pericentral hepatocytes in comparison with the control group. Our approach revealed differences in the FAO activation mode by the two stimuli, i.e., pemafibrate and fasting, with pemafibrate accelerating the time of first detection of FAO-derived fluorescence. No increase in the fluorescence was observed in etomoxir-pretreated mice, confirming that FAOBlue specifically detected FAO in vivo. Thus, FAOBlue is useful for visualizing in vivo liver FAO dynamics at the single-cell-level spatial resolution and seconds-level time resolution.NEW & NOTEWORTHY Fatty acid ß-oxidation (FAO) plays a key role in energy homeostasis. Here, the authors established a strategy for visualizing FAO activity in vivo at the cellular-level spatial resolution and seconds-level time resolution in mice. Quantitative analysis revealed spatiotemporal heterogeneity in hepatic FAO dynamics. Our method is widely applicable because it is simple and uses a multiphoton microscope to observe the FAOBlue-injected mice.


Assuntos
Butiratos , Mitocôndrias , Camundongos , Animais , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Butiratos/metabolismo , Oxirredução , Ácidos Graxos/metabolismo
3.
Sci Rep ; 13(1): 5794, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031318

RESUMO

Fibroblast growth factor 23, parathyroid hormone, and 1,25-dihydroxyvitamin D are critical in phosphate homeostasis. Despite these factors' importance, regulators of phosphaturia in the acute postprandial phase remain largely unknown. This study investigated the mechanism of acute phosphate regulation in the postprandial phase in rats. Duodenal administration of radiolabeled phosphate (32P) showed that 32P levels in the inferior vena cava (IVC) blood were lower than those in the portal vein (PV) blood. Serum phosphate concentration transiently increased 5 min after phosphate solution administration through IVC, while it was maintained after the administration through PV. Phosphate administration through both IVC and PV resulted in increased fractional excretion of phosphate (FEPi) at 10 min without elevation of the known circulating factors, but urinary phosphate excretion during the period was 8% of the dose. Experiments using 32P or partial hepatectomy showed that the liver was one of the phosphate reservoirs. The elevation of FEPi and suppression of sodium-phosphate cotransporter 2a in the kidney at 10 min was attenuated in rats with SCH23390, hepatic denervation, or renal denervation, thus indicating that the liver communicated with the kidney via the nervous system to promote phosphaturia. These results revealed previously unknown mechanisms for serum phosphate maintenance.


Assuntos
Hipofosfatemia Familiar , Fosfatos , Ratos , Animais , Fosfatos/metabolismo , Veia Porta/metabolismo , Rim/metabolismo , Hormônio Paratireóideo , Homeostase , Hipofosfatemia Familiar/metabolismo , Fígado/metabolismo
4.
BMC Nephrol ; 22(1): 253, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229600

RESUMO

BACKGROUND: Phospholipase A2 receptor 1 (PLA2R1) and thrombospondin type-1 domain-containing 7A (THSD7A) are the two major pathogenic antigens for membranous nephropathy (MN). It has been reported that THSD7A-associated MN has a higher prevalence of comorbid malignancy than PLA2R1-associated MN. Here we present a case of MN whose etiology might change from idiopathic to malignancy-associated MN during the patient's clinical course. CASE PRESENTATION: A 68-year-old man with nephrotic syndrome was diagnosed with MN by renal biopsy. Immunohistochemistry showed that the kidney specimen was negative for THSD7A. The first course of corticosteroid therapy achieved partial remission; however, nephrotic syndrome recurred 1 year later. Two years later, his abdominal echography revealed a urinary bladder tumor, but he did not wish to undergo additional diagnostic examinations. Because his proteinuria increased consecutively, corticosteroid therapy was resumed, but it failed to achieve remission. Another kidney biopsy was performed and revealed MN with positive staining for THSD7A. PLA2R1 staining levels were negative for both first and second biopsies. Because his bladder tumor had gradually enlarged, he agreed to undergo bladder tumor resection. Pathological examination indicated that the tumor was THDS7A-positive bladder cancer. Subsequently, his proteinuria decreased and remained in remission. CONCLUSIONS: This case suggests that the etiology of MN might be altered during the therapeutic course. Intensive screening for malignancy may be preferable in patients with unexpected recurrence of proteinuria and/or change in therapy response.


Assuntos
Glomerulonefrite Membranosa/etiologia , Neoplasias da Bexiga Urinária/complicações , Corticosteroides/uso terapêutico , Idoso , Autoanticorpos/análise , Biópsia , Glomerulonefrite Membranosa/diagnóstico , Glomerulonefrite Membranosa/tratamento farmacológico , Glomerulonefrite Membranosa/imunologia , Humanos , Imuno-Histoquímica , Masculino , Receptores da Fosfolipase A2/imunologia , Receptores da Fosfolipase A2/metabolismo , Recidiva , Trombospondinas/imunologia , Trombospondinas/metabolismo , Neoplasias da Bexiga Urinária/cirurgia
5.
Kidney Int Rep ; 6(7): 1923-1938, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34307987

RESUMO

INTRODUCTION: Foot process effacement and mitochondrial fission associate with kidney disease pathogenesis. Electron microscopy is the gold-standard method for their visualization, but the observable area of electron microscopy is smaller than light microscopy. It is important to develop alternative ways to quantitatively evaluate these microstructural changes because the lesion site of renal diseases can be focal. METHODS: We analyzed elastica-Masson trichrome (EMT) and periodic acid-Schiff (PAS) stained kidney sections using structured illumination microscopy (SIM). RESULTS: EMT staining revealed three-dimensional (3D) structures of foot process, whereas ponceau xylidine acid fuchsin azophloxine solution induced fluorescence. Conversion of foot process images into their constituent frequencies by Fourier transform showed that the concentric square of (1/4)2-(1/16)2 in the power spectra (PS) included information for normal periodic structures of foot processes. Foot process integrity, assessed by PS, negatively correlated with proteinuria. EMT-stained sections revealed fragmented mitochondria in mice with mitochondrial injuries and patients with tubulointerstitial nephritis; Fourier transform quantified associated mitochondrial injury. Quantified mitochondrial damage in patients with immunoglobulin A (IgA) nephropathy predicted a decline in estimated glomerular filtration rate (eGFR) after kidney biopsy but did not correlate with eGFR at biopsy. PAS-stained sections, excited by a 640 nm laser, combined with the coefficient of variation values, quantified subtle changes in the basement membranes of patients with membranous nephropathy stage I. CONCLUSIONS: Kidney microstructures are quantified from sections prepared in clinical practice using SIM.

6.
Sci Rep ; 11(1): 73, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420268

RESUMO

Kidney development requires the coordinated growth and differentiation of multiple cells. Despite recent single cell profiles in nephrogenesis research, tools for data analysis are rapidly developing, and offer an opportunity to gain additional insight into kidney development. In this study, single-cell RNA sequencing data obtained from embryonic mouse kidney were re-analyzed. Manifold learning based on partition-based graph-abstraction coordinated cells, reflecting their expected lineage relationships. Consequently, the coordination in combination with ForceAtlas2 enabled the inference of parietal epithelial cells of Bowman's capsule and the inference of cells involved in the developmental process from the S-shaped body to each nephron segment. RNA velocity suggested developmental sequences of proximal tubules and podocytes. In combination with a Markov chain algorithm, RNA velocity suggested the self-renewal processes of nephron progenitors. NicheNet analyses suggested that not only cells belonging to ureteric bud and stroma, but also endothelial cells, macrophages, and pericytes may contribute to the differentiation of cells from nephron progenitors. Organ culture of embryonic mouse kidney demonstrated that nerve growth factor, one of the nephrogenesis-related factors inferred by NicheNet, contributed to mitochondrial biogenesis in developing distal tubules. These approaches suggested previously unrecognized aspects of the underlying mechanisms for kidney development.


Assuntos
Comunicação Celular , Rim/embriologia , Análise de Sequência de RNA , Análise de Célula Única/métodos , Animais , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento/genética , Rim/citologia , Camundongos , Camundongos Endogâmicos C57BL , Néfrons/citologia , Néfrons/embriologia , Análise de Sequência de RNA/métodos
7.
Cardiovasc Drugs Ther ; 35(2): 381-397, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33206298

RESUMO

PURPOSE: Left ventricular hypertrophy (LVH) is a cardiovascular complication highly prevalent in patients with chronic kidney disease (CKD). Previous studies analyzing 1α-hydroxylase or vitamin D receptor (Vdr) knockout mice revealed active vitamin D as a promising agent inhibiting LVH progression. Paricalcitol, an active vitamin D analog, failed to suppress the progression of LV mass index (LVMI) in pre-dialysis patients with CKD. As target genes of activated VDR differ depending on its agonists, we examined the effects of maxacalcitol (22-oxacalcitriol: OCT), a less calcemic active vitamin D analog, on LVH in hemodialysis patients and animal LVH models with renal insufficiency. METHODS: In retrospective cohort study, patients treated with OCT who underwent hemodialysis were enrolled. Using cardiac echocardiography, LV mass was evaluated by the area-length method. In animal study, angiotensin II (Ang II)-infused Wister rats with heminephrectomy or Ang II-stimulated neonatal rat ventricular myocytes (NRVM) were treated with OCT. RESULTS: OCT significantly inhibited the progression of LVMI in hemodialysis patients. In Ang II-infused heminephrectomized rats, OCT suppressed the progression of LVH in a blood pressure-independent manner. OCT also suppressed the activity of calcineurin in the left ventricle of model rats. Specifically, OCT reduced the protein levels of calcineurin A, but not the mRNA levels of Ppp3ca (calcineurin Aα). Luciferase assays showed that OCT increased the promoter activity of Fbxo32 (atrogin1), an E3 ubiquitin ligase targeting calcineurin A. Finally, OCT promoted ubiquitination and degradation of calcineurin A. CONCLUSION: Our works indicated that OCT retards progression of LVH through calcineurin-NFAT pathway, which reveal a novel aspect of OCT in attenuating pathological LVH.


Assuntos
Calcitriol/análogos & derivados , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/patologia , Insuficiência Renal/complicações , Idoso , Animais , Calcineurina/efeitos dos fármacos , Calcitriol/farmacologia , Técnicas de Cultura de Células , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Gravidez , Ratos , Ratos Wistar , Estudos Retrospectivos
8.
Sci Rep ; 10(1): 19038, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149246

RESUMO

Dietary phosphate intake is closely correlated with protein intake. However, the effects of the latter on phosphate-induced organ injuries remain uncertain. Herein, we investigated the effects of low (10.8%), moderate (23.0%), and high (35.2%) dietary casein and egg albumin administration on phosphate-induced organ injuries in rats. The moderate and high casein levels suppressed renal tubulointerstitial fibrosis and maintained mitochondrial integrity in the kidney. The serum creatinine levels were suppressed only in the high casein group. Phosphate-induced muscle weakness was also ameliorated by high dietary casein. The urinary and fecal phosphate levels in the early experiment stage showed that dietary casein did not affect phosphate absorption from the intestine. High dietary egg albumin showed similar kidney protective effects, while the egg albumin effects on muscle weakness were only marginally significant. As the plasma branched-chain amino acid levels were elevated in casein- and egg albumin-fed rats, we analyzed their effects. Dietary supplementation of 10% branched-chain amino acids suppressed phosphate-induced kidney injury and muscle weakness. Although dietary protein restriction is recommended in cases of chronic kidney disease, our findings indicate that the dietary casein, egg albumin, and branched-chain amino acid effects might be reconsidered in the era of a phosphate-enriched diet.


Assuntos
Aminoácidos de Cadeia Ramificada/administração & dosagem , Caseínas/administração & dosagem , Nefrite Intersticial/etiologia , Nefrite Intersticial/patologia , Ovalbumina/administração & dosagem , Fosfatos/efeitos adversos , Animais , Biópsia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imuno-Histoquímica , Debilidade Muscular/dietoterapia , Debilidade Muscular/etiologia , Debilidade Muscular/patologia , Nefrite Intersticial/dietoterapia , Ratos
9.
Kidney Int ; 97(6): 1164-1180, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32354638

RESUMO

Phosphate/calcium homeostasis is crucial for health maintenance. Lithocholic acid, a bile acid produced by intestinal bacteria, is an agonist of vitamin D receptor. However, its effects on phosphate/calcium homeostasis remain unclear. Here, we demonstrated that lithocholic acid increases intestinal phosphate/calcium absorption in an enterocyte vitamin D receptor-dependent manner. Lithocholic acid was found to increase serum phosphate/calcium levels and thus to exacerbate vascular calcification in animals with chronic kidney disease. Lithocholic acid did not affect levels of intestinal sodium-dependent phosphate transport protein 2b, Pi transporter-1, -2, or transient receptor potential vanilloid subfamily member 6. Everted gut sac analyses demonstrated that lithocholic acid increased phosphate/calcium absorption in a transcellular pathway-independent manner. Lithocholic acid suppressed intestinal mucosal claudin 3 and occludin in wild-type mice, but not in vitamin D receptor knockout mice. Everted gut sacs of claudin 3 knockout mice showed an increased permeability for phosphate, but not calcium. In patients with chronic kidney disease, serum 1,25(OH)2 vitamin D levels are decreased, probably as an intrinsic adjustment to reduce phosphate/calcium burden. In contrast, serum and fecal lithocholic acid levels and fecal levels of bile acid 7α-dehydratase, a rate-limiting enzyme involved in lithocholic acid production, were not downregulated. The effects of lithocholic acid were eliminated by bile acid adsorptive resin in mice. Thus, lithocholic acid and claudin 3 may represent novel therapeutic targets for reducing phosphate burden.


Assuntos
Cálcio , Receptores de Calcitriol , Animais , Cálcio/metabolismo , Humanos , Absorção Intestinal , Ácido Litocólico , Camundongos , Fosfatos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Transcitose , Vitamina D
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...