Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20022897

RESUMO

The impact of the drastic reduction in travel volume within mainland China in January and February 2020 was quantified with respect to reports of novel coronavirus (COVID-19) infections outside China. Data on confirmed cases diagnosed outside China were analyzed using statistical models to estimate the impact of travel reduction on three epidemiological outcome measures: (i) the number of exported cases, (ii) the probability of a major epidemic, and (iii) the time delay to a major epidemic. From 28 January to 7 February 2020, we estimated that 226 exported cases (95% confidence interval: 86, 449) were prevented, corresponding to a 70.4% reduction in incidence compared to the counterfactual scenario. The reduced probability of a major epidemic ranged from 7% to 20% in Japan, which resulted in a median time delay to a major epidemic of two days. Depending on the scenario, the estimated delay may be less than one day. As the delay is small, the decision to control travel volume through restrictions on freedom of movement should be balanced between the resulting estimated epidemiological impact and predicted economic fallout.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20020248

RESUMO

A total of 565 Japanese citizens were evacuated from Wuhan, China to Japan. All passengers were screened for symptoms and also undertook reverse transcription polymerase chain reaction testing, identifying 5 asymptomatic and 7 symptomatic passengers testing positive for 2019-nCoV. We show that the screening result is suggestive of the asymptomatic ratio at 41.6%.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20019547

RESUMO

The exported cases of 2019 novel coronavirus (COVID-19) infection that were confirmed outside of China provide an opportunity to estimate the cumulative incidence and confirmed case fatality risk (cCFR) in mainland China. Knowledge of the cCFR is critical to characterize the severity and understand the pandemic potential of COVID-19 in the early stage of the epidemic. Using the exponential growth rate of the incidence, the present study statistically estimated the cCFR and the basic reproduction number--the average number of secondary cases generated by a single primary case in a naive population. We modeled epidemic growth either from a single index case with illness onset on 8 December, 2019 (Scenario 1), or using the growth rate fitted along with the other parameters (Scenario 2) based on data from 20 exported cases reported by 24 January, 2020. The cumulative incidence in China by 24 January was estimated at 6924 cases (95% CI: 4885, 9211) and 19,289 cases (95% CI: 10,901, 30,158), respectively. The latest estimated values of the cCFR were 5.3% (95% CI: 3.5%, 7.5%) for Scenario 1 and 8.4% (95% CI: 5.3%, 12.3%) for Scenario 2. The basic reproduction number was estimated to be 2.1 (95% CI: 2.0, 2.2) and 3.2 (95% CI: 2.7, 3.7) for Scenarios 1 and 2, respectively. Based on these results, we argued that the current COVID-19 epidemic has a substantial potential for causing a pandemic. The proposed approach provides insights in early risk assessment using publicly available data.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20018754

RESUMO

The geographic spread of 2019 novel coronavirus (COVID-19) infections from the epicenter of Wuhan, China, has provided an opportunity to study the natural history of the recently emerged virus. Using publicly available event-date data from the ongoing epidemic, the present study investigated the incubation period and other time intervals that govern the epidemiological dynamics of COVID-19 infections. Our results show that the incubation period falls within the range of 2-14 days with 95% confidence and has a mean of around 5 days when approximated using the best-fit lognormal distribution. The mean time from illness onset to hospital admission (for treatment and/or isolation) was estimated at 3-4 days without truncation and at 5-9 days when right truncated. Based on the 95th percentile estimate of the incubation period, we recommend that the length of quarantine should be at least 14 days. The median time delay of 13 days from illness onset to death (17 days with right truncation) should be considered when estimating the COVID-19 case fatality risk.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20018887

RESUMO

ObjectiveVirological tests indicate that a novel coronavirus is the most likely explanation for the 2019-20 pneumonia outbreak in Wuhan, China. We demonstrate that non-virological descriptive characteristics could have determined that the outbreak is caused by a novel pathogen in advance of virological testing. MethodsCharacteristics of the ongoing outbreak were collected in real time from two medical social media sites. These were compared against characteristics of ten existing pathogens that can induce atypical pneumonia. The probability that the current outbreak is due to "Disease X" (i.e., previously unknown etiology) as opposed to one of the known pathogens was inferred, and this estimate was updated as the outbreak continued. ResultsThe probability that Disease X is driving the outbreak was assessed as over 32% on 31 December 2019, one week before virus identification. After some specific pathogens were ruled out by laboratory tests on 5 Jan 2020, the inferred probability of Disease X was over 59%. ConclusionsWe showed quantitatively that the emerging outbreak of atypical pneumonia cases is consistent with causation by a novel pathogen. The proposed approach, that uses only routinely-observed non-virological data, can aid ongoing risk assessments even before virological test results become available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...