Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(11): 13729-13744, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457643

RESUMO

Current electrocatalysts for oxygen evolution reaction (OER) are either expensive (such as IrO2, RuO2) or/and exhibit high overpotential as well as sluggish kinetics. This article reports mesoporous earth-abundant iron (Fe)-nitrogen (N) doped carbon electrocatalysts with iron clusters and closely surrounding Fe-N4 active sites. Unique to this work is that the mechanically stable mesoporous carbon-matrix structure (79 nm in pore size) with well-dispersed nitrogen-coordinated Fe single atom-cluster is synthesized via rapid thermal annealing (RTA) within only minutes using a self-assembled bottlebrush block copolymer (BBCP) melamine-formaldehyde resin composite template. The resulting porous structure and domain size can be tuned with the degree of polymerization of the BBCP backbone, which increases the electrochemically active surface area and improves electron transfer and mass transport for an effective OER process. The optimized electrocatalyst shows a required potential of 1.48 V (versus RHE) to obtain the current density of 10 mA/cm2 in 1 M KOH aqueous electrolyte and a small Tafel slope of 55 mV/decade at a given overpotential of 250 mV, which is significantly lower than recently reported earth-abundant electrocatalysts. Importantly, the Fe single-atom nitrogen coordination environment facilitates the surface reconstruction into a highly active oxyhydroxide under OER conditions, as revealed by X-ray photoelectron spectroscopy and in situ Raman spectroscopy, while the atomic clusters boost the single atoms reactive sites to prevent demetalation during the OER process. Density functional theory (DFT) calculations support that the iron nitrogen environment and reconstructed oxyhydroxides are electrocatalytically active sites as the kinetics barrier is largely reduced. This work has opened a new avenue for simple, rapid synthesis of inexpensive, earth-abundant, tailorable, mechanically stable, mesoporous carbon-coordinated single-atom electrocatalysts that can be used for renewable energy production.

2.
Angew Chem Int Ed Engl ; 63(2): e202316248, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38029360

RESUMO

Radically-formed, vinyl-derived polymers account for over 30 % of polymer production. Connected through stable carbon-carbon bonds, these materials are notoriously challenging to chemically recycle. Herein, we report universal copolymerization of a cyclic allyl sulfide (CAS) additive with multiple monomers under free-radical conditions, to introduce main-chain dynamic motifs. Backbone allyl sulfides undergo post-polymerization radical rearrangement via addition-fragmentation-transfer (AFT) that fosters both chain scission and extension. Scission is selectively induced through allyl sulfide exchange with small molecule thiyl radicals, resulting in oligomers as low as 14 % of the initial molar mass. Crucially, oligomers retain allyl sulfide end groups, enabling their extension with monomer under radical conditions. Extended, i.e., recycled, product molar mass is tunable through the ratio of monomer to oligomer, and can surpass that of the initial copolymer. Two scission-extension cycles are demonstrated in copolymers with methyl methacrylate and styrene without escalation in dispersity. In illustration of forming higher-value products, i.e., upcycling, we synthesized block copolymers through the extension of oligomers with a different vinyl monomer. Collectively, our approach to chemical recycling is unparalleled in its ability to 1) function in a variety of vinyl-derived polymers, 2) complete radical closed-loop cycling, and 3) upcycle waste material.

3.
ACS Polym Au ; 3(6): 466-474, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38107418

RESUMO

The rheological properties of entangled polymers loaded with very small, strongly attractive polyhedral oligomeric silsesquioxane (POSS) fillers differ from that of nanocomposites with larger fillers by (1) the shorter breadth of the entanglement plateau and (2) the relatively unchanged terminal viscosity with increasing POSS loading. Although such anomalous rheological properties can rewrite the property-processing map of materials (e.g., high glass transition temperature and low viscosity), their mechanism remains unclear. In this study, we report that polymer relaxations on intermediate time scales between α and entire-chain relaxation, so-called "slower processes", are responsible for this unusual rheological behavior of poly(2-vinylpyridine)/octa(aminophenyl)silsesquioxane (P2VP/OAPS) nanocomposites. To uncover the effects of entanglements on the nanocomposite dynamics, rheometry is used for variable matrix molecular weights. Results show a systematic change in the rheological response, which is independent of the molecular weight, and in turn, the presence of entanglements. This supports a physical interpretation that a slower process dominates the rheological response of the material at intermediate frequencies on length scales larger than the segment length or the OAPS diameter, while the underlying physical time scales associated with the entanglement relaxation remain unchanged. Such insights are anticipated to assist the future rational design of other highly attractive and ultrasmall nanoparticles that enable a fine-tuned rheological response of nanocomposites across multiple length scales.

4.
Small ; 19(10): e2206295, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36549897

RESUMO

Overcoming throughput challenges in current graphene defect healing processes, such as conventional thermal annealing, is crucial for realizing post-silicon device fabrication. Herein, a new time- and energy-efficient method for defect healing in graphene is reported, utilizing polymer-assisted rapid thermal annealing (RTA). In this method, a nitrogen-rich, polymeric "nanobandage" is coated directly onto graphene and processed via RTA at 800 °C for 15 s. During this process, the polymer matrix is cleanly degraded, while nitrogen released from the nanobandage can diffuse into graphene, forming nitrogen-doped healed graphene. To study the influence of pre-existing defects on graphene healing, lattice defects are purposefully introduced via electron beam irradiation and investigated by Raman microscopy. X-ray photoelectron spectroscopy reveals successful healing of graphene, observing a maximum doping level of 3 atomic nitrogen % in nanobandage-treated samples from a baseline of 0-1 atomic % in non-nanobandage treated samples. Electrical transport measurements further indicate that the nanobandage treatment recovers the conductivity of scanning electron microscope-treated defective graphene at ≈85%. The reported polymer-assisted RTA defect healing method shows promise for healing other 2D materials with other dopants by simply changing the chemistry of the polymeric nanobandage.

5.
Rev Sci Instrum ; 93(7): 075107, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922301

RESUMO

EXPANSE, an EXPanded Angle Neutron Spin Echo instrument, has been proposed and selected as one of the first suite of instruments to be built at the Second Target Station of the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is designed to address scientific problems that involve high-energy resolution (neV-µeV) of dynamic processes in a wide range of materials. The wide-angle detector banks of EXPANSE provide coverage of nearly two orders of magnitude in scattering wavenumbers, and the wide wavelength band affords approximately four orders of magnitude in Fourier times. This instrument will offer unique capabilities that are not available in the currently existing neutron scattering instruments in the United States. Specifically, EXPANSE will enable direct measurements of slow dynamics in the time domain over wide Q-ranges simultaneously and will also enable time-resolved spectroscopic studies. The instrument is expected to contribute to a diverse range of science areas, including soft matter, polymers, biological materials, liquids and glasses, energy materials, unconventional magnets, and quantum materials.

6.
J Phys Chem Lett ; 13(21): 4794-4799, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35613709

RESUMO

While extrinsic factors, such as substrates and chemical doping, are known to strongly influence visible photoemission from monolayer MoS2, key fundamental knowledge for p-type polymeric dopants is lacking. We investigated perturbations to the electronic environment of 2D MoS2 using fluorinated polymer coatings and specifically studied stabilization of three-particle states by monitoring changes in intensities and emission maxima of three-particle and two-particle emissions. We calculated changes in carrier density and trion binding energy, the latter having an additional contribution from MoS2 polarization by the polymer. Polarization is further suggested by Kelvin probe force microscopy (KPFM) measurements of large Fermi level shifts. Changes similar in magnitude, but opposite in sign, were observed in 2D MoS2 coated with an analogous nonfluorinated polymer. These findings highlight the important interplay between electron exchange and electrostatic interactions at the interface between polymers and transition metal dichalcogenides (TMDCs), which govern fundamental electronic properties relevant to next-generation devices.

7.
ACS Appl Mater Interfaces ; 13(51): 61027-61038, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34913685

RESUMO

Carbonization by rapid thermal annealing (RTA) of precursor films structured by a brush block copolymer-mediated self-assembly enabled the preparation of large-pore (40 nm) ordered mesoporous carbon (MPC)-based micro-supercapacitors within minutes. The large pore size of the fabricated films facilitates both rapid electrolyte diffusion for carbon-based electric double-layer capacitors and conformal deposition of V2O5 without pore blockage for pseudocapacitors. The pores were templated using bottlebrush block copolymers (BBCPs) via cooperative assembly of phenol-formaldehyde resin to produce microphase-segregated carbon precursor films on a variety of substrates. Ultrafast RTA processing (∼50 °C/s) at elevated temperatures (up to 1000 °C) then generated stable, conductive, turbostratic MPC films, resolving a significant bottleneck in rapid fabrication. MPC prepared on stainless steel at 900 °C demonstrated exceptionally high areal and volumetric capacitances of 6.3 mF/cm2 and 126 F/cm3 (at 0.8 mA/cm2 using 6 M KOH as the electrolyte), respectively, and 91% capacitance retention after 10,000 galvanostatic charge/discharge cycles. Post-RTA conformal V2O5 deposition yielded pseudocapacitors with 10-fold increase in energy density (20 µW h cm-2 µm-1) without adversely affecting the high power density (450 µW cm-2 µm-1). The use of RTA coupled with BBCP templating opens avenues for scalable, rapid fabrication of high-performance carbon-based micro-pseudocapacitors.

8.
ACS Appl Mater Interfaces ; 13(40): 47945-47953, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34607423

RESUMO

We investigated the nature of graphene surface doping by zwitterionic polymers and the implications of weak in-plane and strong through-plane screening using a novel sample geometry that allows direct access to either the graphene or the polymer side of a graphene/polymer interface. Using both Kelvin probe and electrostatic force microscopies, we observed a significant upshift in the Fermi level in graphene of ∼260 meV that was dominated by a change in polarizability rather than pure charge transfer with the organic overlayer. This physical picture is supported by density functional theory (DFT) calculations, which describe a redistribution of charge in graphene in response to the dipoles of the adsorbed zwitterionic moieties, analogous to a local DC Stark effect. Strong metallic-like screening of the adsorbed dipoles was observed by employing an inverted geometry, an effect identified by DFT to arise from a strongly asymmetric redistribution of charge confined to the side of graphene proximal to the zwitterion dipoles. Transport measurements confirm n-type doping with no significant impact on carrier mobility, thus demonstrating a route to desirable electronic properties in devices that combine graphene with lithographically patterned polymers.

9.
ACS Nano ; 15(2): 2762-2770, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33512145

RESUMO

Work function engineering of two-dimensional (2D) materials by application of polymer coatings represents a research thrust that promises to enhance the performance of electronic devices. While polymer zwitterions have been demonstrated to significantly modify the work function of both metal electrodes and 2D materials due to their dipole-rich structure, the impact of zwitterion chemical structure on work function modulation is not well understood. To address this knowledge gap, we synthesized a series of sulfobetaine-based zwitterionic random copolymers with variable substituents and used them in lithographic patterning for the preparation of negative-tone resists (i.e., "zwitterists") on monolayer graphene. Ultraviolet photoelectron spectroscopy indicated a significant work function reduction, as high as 1.5 eV, induced by all polymer zwitterions when applied as ultrathin films (<10 nm) on monolayer graphene. Of the polymers studied, the piperidinyl-substituted version, produced the largest dipole normal to the graphene sheet, thereby inducing the maximum work function reduction. Density functional theory calculations probed the influence of zwitterion composition on dipole orientation, while lithographic patterning allowed for evaluation of surface potential contrast via Kelvin probe force microscopy. Overall, this polymer "zwitterist" design holds promise for fine-tuning 2D materials electronics with spatial control based on the chemistry of the polymer coating and the dimensions of the lithographic patterning.

10.
ACS Macro Lett ; 10(11): 1404-1409, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35549020

RESUMO

We report that the fractions of "bonded" or "unbonded" monomers at a filler interface dictate the composition dependence of the glass transition temperatures (Tg) of polyhedral oligomeric silsesquioxane (POSS)-containing nanocomposites. Tg is arguably the single most important material property; however, predicting Tg in nanocomposites is often challenging because of confounding interfacial effects. To this end, we design a model nanocomposite to systematically study Tg of nanocomposites by leveraging the "all-interfacial" nature of ultrasmall POSS fillers loaded into random copolymers of styrene and 2-vinylpyridine (2VP). The amine-functionalized POSS forms hydrogen bonds only with 2VP, which behaves as a "bonded" monomer. The influence of copolymer composition and POSS loading on the Tg of this model composite is successfully explained by a Fox equation framework. This model also captures the Tg increase of other POSS-based polymer composites and potentially directs the future design of nanocomposite materials with tailored Tg.

11.
ACS Appl Mater Interfaces ; 11(23): 21177-21183, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117458

RESUMO

The selective deposition of polymer thin films can be achieved via spin coating by manipulating interfacial interactions. While this "spin dewetting" approach sometimes generates spatial localization on topographic and chemical patterns, the connection between material selection, process parameters, and resulting film characteristics remains poorly understood. Here, we demonstrate that accurate control over these parameters allows incomplete trichlorosilane self-assembled monolayers (SAMs) to induce spin dewetting on both homogeneous (SiO2) and heterogeneous (Cu/SiO2 or TiN/SiO2) surfaces. Glassy polymers undergo a sharp transition from uniform wetting to complete dewetting depending on spin speed, solution concentration, polymer molecular weight, and SAM chemistry. Under optimal conditions, spin dewetting on line-space patterns results in the selective deposition of polymer over regions not functionalized with SAM. The insights described herein clarify the importance of different variables involved in spin dewetting and provide access to a versatile strategy for patterning polymeric thin films.

12.
ACS Macro Lett ; 7(12): 1492-1497, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-35651223

RESUMO

Predicting the interactions between a semiconducting polymer and dopant is not straightforward due to the intrinsic structural and energetic disorder in polymeric systems. Although the driving force for efficient charge transfer depends on a favorable offset between the electron donor and acceptor, we demonstrate that the efficacy of doping also relies on structural constraints of incorporating a dopant molecule into the semiconducting polymer film. Here, we report the evolution in spectroscopic and electrical properties of a model conjugated polymer upon exposure to two dopant types: one that directly oxidizes the polymeric backbone and one that protonates the polymer backbone. Through vapor phase infiltration, the common charge transfer dopant, F4-TCNQ, forms a charge transfer complex (CTC) with the polymer poly(3-(2'-ethyl)hexylthiophene) (P3EHT), a conjugated polymer with the same backbone as the well-characterized polymer P3HT, resulting in a maximum electrical conductivity of 3 × 10-5 S cm-1. We postulate that the branched side chains of P3EHT force F4-TCNQ to reside between the π-faces of the crystallites, resulting in partial charge transfer between the donor and the acceptor. Conversely, protonation of the polymeric backbone using the strong acid, HTFSI, increases the electrical conductivity of P3EHT to a maximum of 4 × 10-3 S cm-1, 2 orders of magnitude higher than when a charge transfer dopant is used. The ability for the backbone of P3EHT to be protonated by an acid dopant, but not oxidized directly by F4-TCNQ, suggests that steric hindrance plays a significant role in the degree of charge transfer between dopant and polymer, even when the driving force for charge transfer is sufficient.

13.
ACS Appl Mater Interfaces ; 8(11): 7456-63, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26942554

RESUMO

Nature has engineered universal, catechol-containing adhesives which can be synthetically mimicked in the form of polydopamine (PDA). In this study, PDA was exploited to enable the formation of block copolymer (BCP) nanopatterns on a variety of soft material surfaces. While conventional PDA coating times (1 h) produce a layer too rough for most applications of BCP nanopatterning, we found that these substrates could be polished by bath sonication in a weakly basic solution to form a conformal, smooth (root-mean-square roughness ∼0.4 nm), and thin (3 nm) layer free of large prominent granules. This chemically functionalized, biomimetic layer served as a reactive platform for subsequently grafting a surface neutral layer of poly(styrene-random-methyl methacrylate-random-glycidyl methacrylate) to perpendicularly orient lamellae-forming poly(styrene-block-methyl methacrylate) BCP. Moreover, scanning electron microscopy observations confirmed that a BCP nanopattern on a poly(ethylene terephthalate) substrate was not affected by bending with a radius of ∼0.5 cm. This procedure enables nondestructive, plasma-free surface modification of chemically inert, low-surface energy soft materials, thus overcoming many current chemical and physical limitations that may impede high-throughput, roll-to-roll nanomanufacturing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...