Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 10(10): 2447-2455, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34585918

RESUMO

Genetic control over a cytoskeletal network inside lipid vesicles offers a potential route to controlled shape changes and DNA segregation in synthetic cell biology. Bacterial microtubules (bMTs) are protein filaments found in bacteria of the genus Prosthecobacter. They are formed by the tubulins BtubA and BtubB, which polymerize in the presence of GTP. Here, we show that the tubulins BtubA/B can be functionally expressed from DNA templates in a reconstituted transcription-translation system, thus providing a cytosol-like environment to study their biochemical and biophysical properties. We found that bMTs spontaneously interact with lipid membranes and display treadmilling. When compartmentalized inside liposomes, de novo synthesized BtubA/B tubulins self-organize into cytoskeletal structures of different morphologies. Moreover, bMTs can exert a pushing force on the membrane and deform liposomes, a phenomenon that can be reversed by a light-activated disassembly of the filaments. Our work establishes bMTs as a new building block in synthetic biology. In the context of creating a synthetic cell, bMTs could help shape the lipid compartment, establish polarity or directional transport, and assist the division machinery.


Assuntos
Lipossomos , Microtúbulos/metabolismo , Verrucomicrobia/metabolismo , Proteínas de Bactérias/metabolismo , Sistema Livre de Células , Citoesqueleto/metabolismo , Guanosina Trifosfato/metabolismo
2.
Phys Biol ; 16(2): 025001, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30625117

RESUMO

DNA-guided cell-free protein synthesis using a minimal set of purified components has emerged as a versatile platform in constructive biology. The E. coli-based PURE (protein synthesis using recombinant elements) system offers the basic protein synthesis factory in a prospective minimal cell relying on extant molecules. However, there is an urgent need to improve the system's performance and to build a mechanistic computational model that can help interpret and predict gene expression dynamics. Herein, we utilized all three commercially available PURE system variants: PURExpress, PUREfrex and PUREfrex2.0. We monitored apparent kinetics of mRNA and protein synthesis by fluorescence spectroscopy at different concentrations of DNA template. Analysis of polysome distributions by atomic force microscopy, combined with a stochastic model of translation, revealed inefficient usage of ribosomes, consistent with the idea that translation initiation is a limiting step. This preliminary dataset was used to formulate hypotheses regarding possible mechanisms impeding robust gene expression. Next, we challenged these hypotheses by devising targeted experiments aimed to alleviate the current limitations of PUREfrex. We identified depletion of key initiation factors (IFs) by translationally inactive mRNA as a possible inhibitory mechanism. This adverse process could partly be remedied by targeted mRNA degradation, whereas addition of more IFs and of the hrpA RNA helicase had no substantial effects. Moreover, the depletion of tRNAs as peptidyl-tRNAs can become limiting in PUREfrex (but not in PURExpress), which can be alleviated by addition of peptidyl-tRNA-hydrolase (PTH). We attempted to build a new model for PURE system dynamics integrating all experimental observations. Although a satisfying global fit can be obtained in specific conditions (with PTH), a unifying system's level model is still missing.


Assuntos
Ácidos Nucleicos Livres/biossíntese , Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , RNA Bacteriano/biossíntese , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...