Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38410488

RESUMO

Background: Regadenoson is used to induce hyperemia in cardiac imaging, facilitating diagnosis of ischemia and assessment of coronary flow reserve (CFR). While the regadenoson package insert recommends administration of radionuclide tracer 10-20 seconds after injection, peak hyperemia has been observed at approximately 100 seconds after injection in healthy volunteers undergoing cardiovascular magnetic resonance imaging (CMR). It is unclear when peak hyperemia occurs in a patient population. Objectives: The goal of this study was to determine time to peak hyperemia after regadenoson injection in healthy volunteers and patients, and whether the recommended image timing in the package insert underestimates CFR. Methods: Healthy volunteers (n=15) and patients (n=25) underwent stress CMR, including phase-contrast imaging of the coronary sinus at rest and multiple timepoints after 0.4 mg regadenoson injection. Coronary sinus flow (ml/min) was divided by resting values to yield CFR. Smoothed, time-resolved curves for CFR were generated with pointwise 95% confidence intervals. Results: CFR between 60 and 120 seconds was significantly higher than CFR at 30 seconds after regadenoson injection (p < 0.05) as shown by non-overlapping 95% confidence intervals for both healthy volunteers (30 s, [2.8, 3.4]; 60 s, [3.8, 4.4]; 90 s, [4.1, 4.7]; 120 s, [3.6, 4.3]) and patients (30 s, [2.1, 2.5]; 60 s, [2.6, 3.1]; 90 s, [2.7, 3.2]; 120 s, [2.5, 3.1]). Conclusion: Imaging at 90 seconds following regadenoson injection is the optimal approach to capture peak hyperemia. Imaging at 30 seconds, which is more aligned with the package insert recommendation, would yield an underestimate of CFR and confound assessment of microvascular dysfunction.

3.
Metabolites ; 11(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926132

RESUMO

Diets rich in fats and carbohydrates aggravate non-alcoholic fatty liver disease (NAFLD), of which mitochondrial dysfunction is a central feature. It is not clear whether a high-carbohydrate driven 'lipogenic' diet differentially affects mitochondrial oxidative remodeling compared to a high-fat driven 'oxidative' environment. We hypothesized that the high-fat driven 'oxidative' environment will chronically sustain mitochondrial oxidative function, hastening metabolic dysfunction during NAFLD. Mice (C57BL/6NJ) were reared on a low-fat (LF; 10% fat calories), high-fat (HF; 60% fat calories), or high-fructose/high-fat (HFr/HF; 25% fat and 34.9% fructose calories) diet for 10 weeks. De novo lipogenesis was determined by measuring the incorporation of deuterium from D2O into newly synthesized liver lipids using nuclear magnetic resonance (NMR) spectroscopy. Hepatic mitochondrial metabolism was profiled under fed and fasted states by the incubation of isolated mitochondria with [13C3]pyruvate, targeted metabolomics of tricarboxylic acid (TCA) cycle intermediates, estimates of oxidative phosphorylation (OXPHOS), and hepatic gene and protein expression. De novo lipogenesis was higher in the HFr/HF mice compared to their HF counterparts. Contrary to our expectations, hepatic oxidative function after fasting was induced in the HFr/HF group. This differential induction of mitochondrial oxidative function by the high fructose-driven 'lipogenic' environment could influence the progressive severity of hepatic insulin resistance.

4.
FASEB J ; 34(11): 14832-14849, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32918763

RESUMO

Mitochondrial adaptation during non-alcoholic fatty liver disease (NAFLD) include remodeling of ketogenic flux and sustained tricarboxylic acid (TCA) cycle activity, which are concurrent to onset of oxidative stress. Over 70% of obese humans have NAFLD and ketogenic diets are common weight loss strategies. However, the effectiveness of ketogenic diets toward alleviating NAFLD remains unclear. We hypothesized that chronic ketogenesis will worsen metabolic dysfunction and oxidative stress during NAFLD. Mice (C57BL/6) were kept (for 16-wks) on either a low-fat, high-fat, or high-fat diet supplemented with 1.5X branched chain amino acids (BCAAs) by replacing carbohydrate calories (ketogenic). The ketogenic diet induced hepatic lipid oxidation and ketogenesis, and produced multifaceted changes in flux through the individual steps of the TCA cycle. Higher rates of hepatic oxidative fluxes fueled by the ketogenic diet paralleled lower rates of de novo lipogenesis. Interestingly, this metabolic remodeling did not improve insulin resistance, but induced fibrogenic genes and inflammation in the liver. Under a chronic "ketogenic environment," the hepatocyte diverted more acetyl-CoA away from lipogenesis toward ketogenesis and TCA cycle, a milieu which can hasten oxidative stress and inflammation. In summary, chronic exposure to ketogenic environment during obesity and NAFLD has the potential to aggravate hepatic mitochondrial dysfunction.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Dieta Cetogênica/efeitos adversos , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Animais , Metabolismo dos Carboidratos , Ciclo do Ácido Cítrico , Lipogênese , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Sci Rep ; 9(1): 20167, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882889

RESUMO

During the normal embryonic-to-neonatal development, the chicken liver is subjected to intense lipid burden from high rates of yolk-lipid oxidation and also from the accumulation of the yolk-derived and newly synthesized lipids from carbohydrates. High rates of hepatic lipid oxidation and lipogenesis are also central features of non-alcoholic fatty liver disease (NAFLD) in both rodents and humans, but is associated with impaired insulin signaling, dysfunctional mitochondrial energetics and oxidative stress. However, these adverse effects are not apparent in the liver of embryonic and neonatal chicken, despite lipid burden. Utilizing comprehensive metabolic profiling, we identify that steady induction of hepatic mitochondrial tricarboxylic acid (TCA) cycle and lipogenesis are central features of embryonic-to-neonatal transition. More importantly, the induction of TCA cycle and lipogenesis occurred together with the downregulation of hepatic ß-oxidation and ketogenesis in the neonatal chicken. This synergistic remodeling of hepatic metabolic networks blunted inflammatory onset, prevented accumulation of lipotoxic intermediates (ceramides and diacylglycerols) and reduced reactive oxygen species production during embryonic-to-neonatal development. This dynamic remodeling of hepatic mitochondrial oxidative flux and lipogenesis aids in the healthy embryonic-to-neonatal transition in chicken. This natural physiological system could help identify mechanisms regulating mitochondrial function and lipogenesis, with potential implications towards treatment of NAFLD.


Assuntos
Desenvolvimento Embrionário , Metabolismo Energético , Lipogênese , Mitocôndrias Hepáticas/metabolismo , Oxirredução , Animais , Respiração Celular , Ciclo do Ácido Cítrico , Insulina/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...