Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 6(12): 1850-1859, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36266458

RESUMO

Global maps of plant functional traits are essential for studying the dynamics of the terrestrial biosphere, yet the spatial distribution of trait measurements remains sparse. With the increasing popularity of species identification apps, citizen scientists contribute to growing vegetation data collections. The question emerges whether such opportunistic citizen science data can help map plant functional traits globally. Here we show that we can map global trait patterns by complementing vascular plant observations from the global citizen science project iNaturalist with measurements from the plant trait database TRY. We evaluate these maps using sPlotOpen, a global collection of vegetation plot data. Our results show high correlations between the iNaturalist- and sPlotOpen-based maps of up to 0.69 (r) and higher correlations than to previously published trait maps. As citizen science data collections continue to grow, we can expect them to play a significant role in further improving maps of plant functional traits.


Assuntos
Ciência do Cidadão , Plantas
2.
PeerJ ; 10: e14219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262418

RESUMO

Ecosystem restoration and reforestation often operate at large scales, whereas monitoring practices are usually limited to spatially restricted field measurements that are (i) time- and labour-intensive, and (ii) unable to accurately quantify restoration success over hundreds to thousands of hectares. Recent advances in remote sensing technologies paired with deep learning algorithms provide an unprecedented opportunity for monitoring changes in vegetation cover at spatial and temporal scales. Such data can feed directly into adaptive management practices and provide insights into restoration and regeneration dynamics. Here, we demonstrate that convolutional neural network (CNN) segmentation algorithms can accurately classify the canopy cover of Portulacaria afra Jacq. in imagery acquired using different models of unoccupied aerial vehicles (UAVs) and under variable light intensities. Portulacaria afra is the target species for the restoration of Albany Subtropical Thicket vegetation, endemic to South Africa, where canopy cover is challenging to measure due to the dense, tangled structure of this vegetation. The automated classification strategy presented here is widely transferable to restoration monitoring as its application does not require any knowledge of the CNN model or specialist training, and can be applied to imagery generated by a range of UAV models. This will reduce the sampling effort required to track restoration trajectories in space and time, contributing to more effective management of restoration sites, and promoting collaboration between scientists, practitioners and landowners.


Assuntos
Ecossistema , Dispositivos Aéreos não Tripulados , Tecnologia de Sensoriamento Remoto , Redes Neurais de Computação , Algoritmos
3.
Sci Rep ; 11(1): 16395, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385494

RESUMO

Plant functional traits ('traits') are essential for assessing biodiversity and ecosystem processes, but cumbersome to measure. To facilitate trait measurements, we test if traits can be predicted through visible morphological features by coupling heterogeneous photographs from citizen science (iNaturalist) with trait observations (TRY database) through Convolutional Neural Networks (CNN). Our results show that image features suffice to predict several traits representing the main axes of plant functioning. The accuracy is enhanced when using CNN ensembles and incorporating prior knowledge on trait plasticity and climate. Our results suggest that these models generalise across growth forms, taxa and biomes around the globe. We highlight the applicability of this approach by producing global trait maps that reflect known macroecological patterns. These findings demonstrate the potential of Big Data derived from professional and citizen science in concert with CNN as powerful tools for an efficient and automated assessment of Earth's plant functional diversity.

4.
Sci Rep ; 9(1): 17656, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776370

RESUMO

Recent technological advances in remote sensing sensors and platforms, such as high-resolution satellite imagers or unmanned aerial vehicles (UAV), facilitate the availability of fine-grained earth observation data. Such data reveal vegetation canopies in high spatial detail. Efficient methods are needed to fully harness this unpreceded source of information for vegetation mapping. Deep learning algorithms such as Convolutional Neural Networks (CNN) are currently paving new avenues in the field of image analysis and computer vision. Using multiple datasets, we test a CNN-based segmentation approach (U-net) in combination with training data directly derived from visual interpretation of UAV-based high-resolution RGB imagery for fine-grained mapping of vegetation species and communities. We demonstrate that this approach indeed accurately segments and maps vegetation species and communities (at least 84% accuracy). The fact that we only used RGB imagery suggests that plant identification at very high spatial resolutions is facilitated through spatial patterns rather than spectral information. Accordingly, the presented approach is compatible with low-cost UAV systems that are easy to operate and thus applicable to a wide range of users.


Assuntos
Coleta de Dados/métodos , Redes Neurais de Computação , Plantas , Imagens de Satélites/métodos , Algoritmos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Fenômenos Fisiológicos Vegetais , Tecnologia de Sensoriamento Remoto/métodos , Tecnologia de Sensoriamento Remoto/normas , Imagens de Satélites/normas
5.
Sci Data ; 6(1): 78, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31148554

RESUMO

The Tibetan Plateau is a unique, biodiverse ecosystem with an important role in the climate and hydrological system of Asia. Its vegetation supports important functions including fodder provision, erosion prevention and water retention. Assessing vegetation trends of the Tibetan Plateau is crucial to understand effects of recent climate and land-use changes. Most existing vegetation trend products covering the entire Tibetan Plateau have a coarse spatial grain and cover short temporal ranges. This hampers their applicability in studies conducted at local scales where land-use decisions take place and at time scales where climate changes become apparent. Here, we present vegetation trend products for the entire Tibetan Plateau at a spatial resolution of 30 m for the time period 1990-2018. These products include results of a modified Mann-Kendall trend test applied to annual Landsat-based NDVI mosaics, composed from all satellite observations acquired during the vegetation periods as well as NDVI difference images. These data can be valuable to many researchers including for example wildlife ecologists, rangeland experts and climate change researchers.


Assuntos
Ecossistema , Plantas , Imagens de Satélites , Mudança Climática , Tibet
6.
Sci Rep ; 9(1): 6541, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024052

RESUMO

Optical remote sensing is potentially highly informative to track Earth's plant functional diversity. Yet, causal explanations of how and why plant functioning is expressed in canopy reflectance remain limited. Variation in canopy reflectance can be described by radiative transfer models (here PROSAIL) that incorporate plant traits affecting light transmission in canopies. To establish causal links between canopy reflectance and plant functioning, we investigate how two plant functional schemes, i.e. the Leaf Economic Spectrum (LES) and CSR plant strategies, are related to traits with relevance to reflectance. These traits indeed related to both functional schemes, whereas only traits describing leaf properties correlated with the LES. In contrast, traits related to canopy structure showed no correlation to the LES, but to CSR strategies, as the latter integrates both plant economics and size traits, rather than solely leaf economics. Multiple optically relevant traits featured comparable or higher correspondence to the CSR space than those traits originally used to allocate CSR scores. This evidences that plant functions and strategies are directly expressed in reflectance and entails that canopy 'reflectance follows function'. This opens up new possibilities to understand differences in plant functioning and to harness optical remote sensing data for monitoring Earth´s functional diversity.


Assuntos
Clorofila/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...