Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 51(9): 1089-1104, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37137718

RESUMO

In recent years, some endogenous substrates of organic anion transporting polypeptide 1B (OATP1B) have been identified and characterized as potential biomarkers to assess OATP1B-mediated clinical drug-drug interactions (DDIs). However, quantitative determination of their selectivity to OATP1B is still limited. In this study, we developed a relative activity factor (RAF) method to determine the relative contribution of hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1, and sodium-taurocholate co-transporting polypeptide (NTCP) on hepatic uptake of several OATP1B biomarkers, including coproporphyrin I (CPI), coproporphyrin I CPIII, and sulfate conjugates of bile acids: glycochenodeoxycholic acid sulfate (GCDCA-S), glycodeoxycholic acid sulfate (GDCA-S), and taurochenodeoxycholic acid sulfate (TCDCA-S). RAF values for OATP1B1, OATP1B3, OATP2B1, and NTCP were determined in cryopreserved human hepatocytes and transporter transfected cells using pitavastatin, cholecystokinin, resveratrol-3-O-ß-D-glucuronide, and taurocholic acid (TCA) as reference compounds, respectively. OATP1B1-specific pitavastatin uptake in hepatocytes was measured in the absence and presence of 1 µM estropipate, whereas NTCP-specific TCA uptake was measured in the presence of 10 µM rifampin. Our studies suggested that CPI was a more selective biomarker for OATP1B1 than CPIII, whereas GCDCA-S and TCDCA-S were more selective to OATP1B3. OATP1B1 and OATP1B3 equally contributed to hepatic uptake of GDCA-S. The mechanistic static model, incorporating the fraction transported of CPI/III estimated by RAF and in vivo elimination data, predicted several perpetrator interactions with CPI/III. Overall, RAF method combined with pharmacogenomic and DDI studies is a useful tool to determine the selectivity of transporter biomarkers and facilitate the selection of appropriate biomarkers for DDI evaluation. SIGNIFICANCE STATEMENT: The authors developed a new relative activity factor (RAF) method to quantify the contribution of hepatic uptake transporters organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, and sodium taurocholate co-transporting polypeptide (NTCP) on several OATP1B biomarkers and evaluated their predictive value on drug-drug interactions (DDI). These studies suggest that the RAF method is a useful tool to determine the selectivity of transporter biomarkers. This method combined with pharmacogenomic and DDI studies will mechanistically facilitate the selection of appropriate biomarkers for DDI prediction.


Assuntos
Transportadores de Ânions Orgânicos , Humanos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Transportador 1 de Ânion Orgânico Específico do Fígado , Hepatócitos , Proteínas de Membrana Transportadoras , Biomarcadores , Interações Medicamentosas
2.
Drug Metab Dispos ; 50(7): 909-922, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489778

RESUMO

The multidrug resistance protein 1 (MDR1) P-glycoprotein (P-gp) is a clinically important transporter. In vitro P-gp inhibition assays have been routinely conducted to predict the potential for clinical drug-drug interactions (DDIs) mediated by P-gp. However, high interlaboratory and intersystem variability of P-gp IC50 data limits accurate prediction of DDIs using static models and decision criteria recommended by regulatory agencies. In this study, we calibrated two in vitro P-gp inhibition models: vesicular uptake of N-methyl-quinidine (NMQ) in MDR1 vesicles and bidirectional transport (BDT) of digoxin in Lilly Laboratories Cell Porcine Kidney 1 cells overexpressing MDR1 (LLC-MDR1) using a total of 48 P-gp inhibitor and noninhibitor drugs and digoxin DDI data from 70 clinical studies. Refined thresholds were derived using receiver operating characteristic analysis, and their predictive performance was compared with the decision frameworks proposed by regulatory agencies and selected reference. Furthermore, the impact of various IC50 calculation methods and nonspecific binding of drugs on DDI prediction was evaluated. Our studies suggest that the concentration of inhibitor based on highest approved dose dissolved in 250 ml divided by IC50(I2/IC50) is sufficient to predict P-gp related intestinal DDIs. IC50 obtained from vesicular inhibition assay with a refined threshold of I2/IC50 ≥ 25.9 provides comparable predictive power over those measured by net secretory flux and efflux ratio in LLC-MDR1 cells. We therefore recommend vesicular P-gp inhibition as our preferred method given its simplicity, lower variability, higher assay throughput, and more direct estimation of in vitro kinetic parameters, rather than BDT assay. SIGNIFICANCE STATEMENT: This study has conducted comprehensive calibration of two in vitro P-gp inhibition models: uptake in MDR1 vesicles and bidirectional transport in LLC-MDR1 cell monolayers to predict DDIs. This study suggests that IC50s obtained from vesicular inhibition with a refined threshold of I2/IC50 ≥ 25.9 provide comparable predictive power over those in LLC-MDR1 cells. Therefore, vesicular P-gp inhibition is recommended as the preferred method given its simplicity, lower variability, higher assay throughput, and more direct estimation of in vitro kinetic parameters.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Digoxina , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/fisiologia , Digoxina/metabolismo , Suínos , Transcitose
3.
Antibiotics (Basel) ; 10(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34680765

RESUMO

(1) Purpose of this study: determination of adsorption and transmembrane clearances (CLTM) of imipenem and relebactam in ex vivo continuous hemofiltration (CH) and continuous hemodialysis (CHD) models. These clearances were incorporated into a Monte Carlo Simulation (MCS), to develop drug dosing recommendations for critically ill patients requiring continuous renal replacement therapy (CRRT); (2) Methods: A validated ex vivo bovine blood CH and CHD model using two hemodiafilters. Imipenem/relebactam and urea CLTM at different ultrafiltrate/dialysate flow rates were evaluated in both CH and CHD. MCS was performed to determine dose recommendations for patients receiving CRRT; (3) Results: Neither imipenem nor relebactam adsorbed to the CRRT apparatus. The CLTM of imipenem, relebactam, and urea approximated the effluent rates (ultrafiltrate/dialysate flow rates). The types of hemodiafilter and effluent rates did not influence CLTM except in a dialysis flow rate of 1 L/h and 6 L/h in the CHD with relebactam (p < 0.05). Imipenem and relebactam 200 mg/100 mg every 6 h were sufficient to meet the standard time above the MIC pharmacodynamic targets in the modeled CRRT regimen of 25 kg/mL/h. (4) Conclusions: Imipenem and relebactam are not removed by adsorption to the CRRT apparatus, but readily cross the hemodiafilter membrane in CH and CHD. Dosage adjustment of imipenem/relebactam is likely required for critically ill patients receiving CRRT.

4.
Open Forum Infect Dis ; 7(11): ofaa469, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33241064

RESUMO

Our hollow-fiber infection model simulated the projected steady-state pharmacokinetics of ceftolozane and tazobactam in lung epithelial lining fluid of patients with pneumonia receiving 3 g of ceftolozane/tazobactam every 8 hours. Results confirmed the previously established in vitro activity of ceftolozane/tazobactam at and above approved breakpoints against multidrug-resistant Pseudomonas aeruginosa, regardless of Pseudomonas-derived cephalosporinase allele.

5.
J Pharm Biomed Anal ; 188: 113401, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32563056

RESUMO

Cleaning verification (CV) is a critical step in the pharmaceutical manufacturing process to eliminate or reduce unacceptable contamination of a product as a result of insufficiently cleaned equipment surfaces. The main concern is cross contamination with active pharmaceutical ingredients (APIs) from previous runs that may impact patient safety. Current conventional approaches involve rather tedious sample preparation and analytical methods with relative lengthy analysis time. Potent APIs possessing low acceptable daily intake (ADI) values require analytical methods for CV with very low detection limits to confirm that these APIs are below their acceptance limits prior to the next manufacturing process. In this work, a novel end to end CV workflow was developed, which includes the automated sample and calibration solution preparation as well as high throughput analysis by ultra-high-performance liquid chromatography (UHPLC) coupled with single quadrupole mass spectrometry in multiple injection chromatography and selected ion monitoring mode (MIC-MS-SIM). The method was validated using ten model compounds. Acceptable specificity, linearity (R2 > 0.997) and single digit ng/mL LOQ and LOD were achieved for all model compounds. This approach was also successfully applied to the analysis of 22 internal CV samples from an internal program.


Assuntos
Contaminação de Medicamentos , Preparações Farmacêuticas , Cromatografia Líquida de Alta Pressão , Contaminação de Medicamentos/prevenção & controle , Humanos , Espectrometria de Massas , Fluxo de Trabalho
6.
Artigo em Inglês | MEDLINE | ID: mdl-29507068

RESUMO

Resistance to antibiotics among bacterial pathogens is rapidly spreading, and therapeutic options against multidrug-resistant bacteria are limited. There is an urgent need for new drugs, especially those that can circumvent the broad array of resistance pathways that bacteria have evolved. In this study, we assessed the pharmacokinetic/pharmacodynamic relationship of the novel ß-lactamase inhibitor relebactam (REL; MK-7655) in a hollow-fiber infection model. REL is intended for use with the carbapenem ß-lactam antibiotic imipenem for the treatment of Gram-negative bacterial infections. In this study, we used an in vitro hollow-fiber infection model to confirm the efficacy of human exposures associated with the phase 2 doses (imipenem at 500 mg plus REL at 125 or 250 mg administered intravenously every 6 h as a 30-min infusion) against imipenem-resistant strains of Pseudomonas aeruginosa and Klebsiella pneumoniae Dose fractionation experiments confirmed that the pharmacokinetic parameter that best correlated with REL activity is the area under the concentration-time curve, consistent with findings in a murine pharmacokinetic/pharmacodynamic model. Determination of the pharmacokinetic/pharmacodynamic relationship between ß-lactam antibiotics and ß-lactamase inhibitors is complex, as there is an interdependence between their respective exposure-response relationships. Here, we show that this interdependence could be captured by treating the MIC of imipenem as dynamic: it changes with time, and this change is directly related to REL levels. For the strains tested, the percentage of the dosing interval time that the concentration remains above the dynamic MIC for imipenem was maintained at the carbapenem target of 30 to 40%, required for maximum efficacy, for imipenem at 500 mg plus REL at 250 mg.


Assuntos
Imipenem/farmacologia , Inibidores de beta-Lactamases/farmacologia , Animais , Compostos Azabicíclicos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana
7.
J Pharm Sci ; 103(10): 3302-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25116691

RESUMO

The experimental measurement of plasma protein binding is a useful in vitro Absorption Distribution Metabolism and Excretion(ADME) assay currently conducted in both screening and definitive early development candidate modes. The fraction unbound is utilized to calculate important pharmacokinetic (PK) parameters such as unbound clearance and unbound volume of distribution in animals that can be used to make human PK and dose predictions and estimate clinically relevant drug-drug interaction potential. Although these types of assays have been executed for decades, a rigorous statistical analysis of sources of variability has not been conducted because of the tedious nature of the manual experiment. Automated conduct of the incubations using a 96-well equilibrium dialysis device as well as high-throughput liquid chromatography-mass spectrometry quantitation has now made this level of rigor accessible and useful. Sources of variability were assessed including well position, day-to-day, and site-to-site reproducibility. Optimal pH conditions were determined using a design of experiments method interrogating buffer strength, CO2 % and device preparation conditions. Variability was minimized by implementing an in-well control that is concurrently analyzed with new chemical entity analytes. Data acceptance criteria have been set for both the in-well control and the range of analyte variability, with a sliding scale tied to analyte-binding characteristics. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3302-3309, 2014.


Assuntos
Proteínas Sanguíneas/metabolismo , Cromatografia Líquida , Humanos , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...