RESUMO
Autophagy is an evolutionary conserved process by which eukaryotic cells undergo self-digestion of cytoplasmic components. Here we report that a novel Drosophila immunophilin, which we have named Zonda, is critically required for starvation-induced autophagy. We show that Zonda operates at early stages of the process, specifically for Vps34-mediated phosphatidylinositol 3-phosphate (PI3P) deposition. Zonda displays an even distribution under basal conditions and, soon after starvation, nucleates in endoplasmic reticulum-associated foci that colocalize with omegasome markers. Zonda nucleation depends on Atg1, Atg13, and Atg17 but does not require Vps34, Vps15, Atg6, or Atg14. Zonda interacts physically with Atg1 through its kinase domain, as well as with Atg6 and Vps34. We propose that Zonda is an early component of the autophagy cascade necessary for Vps34-dependent PI3P deposition and omegasome formation.
Assuntos
Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Imunofilinas/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Imunofilinas/genética , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de SinaisRESUMO
Adaptation to hypoxia depends on a conserved α/ß heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3' UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Loci Gênicos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mamíferos , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Traqueia/crescimento & desenvolvimento , Transcrição GênicaRESUMO
Cellular and systemic responses to low oxygen levels are principally mediated by Hypoxia Inducible Factors (HIFs), a family of evolutionary conserved heterodimeric transcription factors, whose alpha- and beta-subunits belong to the bHLH-PAS family. In normoxia, HIFα is hydroxylated by specific prolyl-4-hydroxylases, targeting it for proteasomal degradation, while in hypoxia the activity of these hydroxylases decreases due to low oxygen availability, leading to HIFα accumulation and expression of HIF target genes. To identify microRNAs required for maximal HIF activity, we conducted an overexpression screen in Drosophila melanogaster, evaluating the induction of a HIF transcriptional reporter. miR-190 overexpression enhanced HIF-dependent biological responses, including terminal sprouting of the tracheal system, while in miR-190 loss of function embryos the hypoxic response was impaired. In hypoxic conditions, miR-190 expression was upregulated and required for induction of HIF target genes by directly inhibiting the HIF prolyl-4-hydroxylase Fatiga. Thus, miR-190 is a novel regulator of the hypoxia response that represses the oxygen sensor Fatiga, leading to HIFα stabilization and enhancement of hypoxic responses.
Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/biossíntese , Prolil Hidroxilases/genética , Transcrição Gênica , Animais , Hipóxia Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/genética , Oxigênio/metabolismo , Prolil Hidroxilases/metabolismoRESUMO
In this Extra View we comment on our recent work on Sudestada1 (Sud1), a Drosophila 2-oxoglutarate (2OG)-dependent dioxygenase that belongs to the Ribosomal Oxygenase (ROX) subfamily. Sud1 is required for normal growth in Drosophila, and is conserved in yeast and mammals. We reported that Sud1 hydroxylates the ribosomal protein S23 (RPS23), and that its loss of function restricts growth and provokes activation of the unfolded protein response, apoptosis and autophagy. In this Extra View we speculate on the role that RPS23 hydroxylation might play in stop codon recognition and on the possible link between Sud1 loss-of-function and activation of the Unfolded Protein Response, Stress Granules formation and growth impairment.
Assuntos
Processos de Crescimento Celular , Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Regulação da Expressão Gênica , Prolil Hidroxilases/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , HidroxilaçãoRESUMO
Genome sequences predict the presence of many 2-oxoglutarate (2OG)-dependent oxygenases of unknown biochemical and biological functions in Drosophila. Ribosomal protein hydroxylation is emerging as an important 2OG oxygenase catalyzed pathway, but its biological functions are unclear. We report investigations on the function of Sudestada1 (Sud1), a Drosophila ribosomal oxygenase. As with its human and yeast homologs, OGFOD1 and Tpa1p, respectively, we identified Sud1 to catalyze prolyl-hydroxylation of the small ribosomal subunit protein RPS23. Like OGFOD1, Sud1 catalyzes a single prolyl-hydroxylation of RPS23 in contrast to yeast Tpa1p, where Pro-64 dihydroxylation is observed. RNAi-mediated Sud1 knockdown hinders normal growth in different Drosophila tissues. Growth impairment originates from both reduction of cell size and diminution of the number of cells and correlates with impaired translation efficiency and activation of the unfolded protein response in the endoplasmic reticulum. This is accompanied by phosphorylation of eIF2α and concomitant formation of stress granules, as well as promotion of autophagy and apoptosis. These observations, together with those on enzyme homologs described in the companion articles, reveal conserved biochemical and biological roles for a widely distributed ribosomal oxygenase.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Homeostase/fisiologia , Prolil Hidroxilases/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas Ribossômicas/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/genética , Autofagia/genética , Western Blotting , Pesos e Medidas Corporais , Cromatografia Líquida , Primers do DNA/genética , Proteínas de Drosophila/genética , Corpo Adiposo/citologia , Feminino , Técnicas de Silenciamento de Genes , Hidroxilação , Prolil Hidroxilases/genética , Processamento de Proteína Pós-Traducional/fisiologia , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Ribossômicas/genética , Espectrometria de Massas em Tandem , Resposta a Proteínas não Dobradas/genéticaRESUMO
Mammalian insulin-degrading enzyme (IDE) cleaves insulin, among other peptidic substrates, but its function in insulin signaling is elusive. We use the Drosophila system to define the function of IDE in the regulation of growth and metabolism. We find that either loss or gain of function of Drosophila IDE (dIDE) can restrict growth in a cell-autonomous manner by affecting both cell size and cell number. dIDE can modulate Drosophila insulin-like peptide 2 levels, thereby restricting activation of the phosphatidylinositol-3-phosphate kinase pathway and promoting activation of Drosophila forkhead box, subgroup O transcription factor. Larvae reared in high sucrose exhibit delayed developmental timing due to insulin resistance. We find that dIDE loss of function exacerbates this phenotype and that mutants display increased levels of circulating sugar, along with augmented expression of a lipid biosynthesis marker. We propose that dIDE is a modulator of insulin signaling and that its loss of function favors insulin resistance, a hallmark of diabetes mellitus type II.