Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 359(6382): 1376-1383, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29519916

RESUMO

Obesity, diabetes, and related manifestations are associated with an enhanced, but poorly understood, risk for mucosal infection and systemic inflammation. Here, we show in mouse models of obesity and diabetes that hyperglycemia drives intestinal barrier permeability, through GLUT2-dependent transcriptional reprogramming of intestinal epithelial cells and alteration of tight and adherence junction integrity. Consequently, hyperglycemia-mediated barrier disruption leads to systemic influx of microbial products and enhanced dissemination of enteric infection. Treatment of hyperglycemia, intestinal epithelial-specific GLUT2 deletion, or inhibition of glucose metabolism restores barrier function and bacterial containment. In humans, systemic influx of intestinal microbiome products correlates with individualized glycemic control, indicated by glycated hemoglobin levels. Together, our results mechanistically link hyperglycemia and intestinal barrier function with systemic infectious and inflammatory consequences of obesity and diabetes.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Infecções por Escherichia coli/fisiopatologia , Hiperglicemia/fisiopatologia , Enteropatias/microbiologia , Enteropatias/fisiopatologia , Animais , Células CACO-2 , Reprogramação Celular , Citrobacter rodentium , Escherichia coli Enteropatogênica , Microbioma Gastrointestinal , Deleção de Genes , Glucose/metabolismo , Glucose/farmacologia , Transportador de Glucose Tipo 2/genética , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiopatologia , Camundongos , Camundongos Endogâmicos , Obesidade/fisiopatologia , Permeabilidade , Receptores para Leptina/genética , Estreptozocina
2.
Semin Immunopathol ; 37(1): 39-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25315349

RESUMO

Inflammasomes are multiprotein complexes that serve as signaling platforms initiating innate immune responses. These structures are assembled upon a large array of stimuli, sensing both microbial products and endogenous signals indicating loss of cellular homeostasis. As such, inflammasomes are regarded as sensors of cellular integrity and tissue health, which, upon disruption of homeostasis, provoke an inflammatory response by the release of potent cytokines. Recent evidence suggests that in addition to sensing cellular integrity, inflammasomes are involved in the homeostatic mutualism between the host and its indigenous microbiota. Here, we summarize the involvement of various inflammasomes in host-microbiota interactions and focus on the role of commensal as well as pathogenic bacteria in inflammasome signaling.


Assuntos
Homeostase/imunologia , Imunidade Inata/imunologia , Inflamassomos/imunologia , Microbiota/imunologia , Simbiose/imunologia , Humanos
3.
Cell ; 159(3): 514-29, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25417104

RESUMO

All domains of life feature diverse molecular clock machineries that synchronize physiological processes to diurnal environmental fluctuations. However, no mechanisms are known to cross-regulate prokaryotic and eukaryotic circadian rhythms in multikingdom ecosystems. Here, we show that the intestinal microbiota, in both mice and humans, exhibits diurnal oscillations that are influenced by feeding rhythms, leading to time-specific compositional and functional profiles over the course of a day. Ablation of host molecular clock components or induction of jet lag leads to aberrant microbiota diurnal fluctuations and dysbiosis, driven by impaired feeding rhythmicity. Consequently, jet-lag-induced dysbiosis in both mice and humans promotes glucose intolerance and obesity that are transferrable to germ-free mice upon fecal transplantation. Together, these findings provide evidence of coordinated metaorganism diurnal rhythmicity and offer a microbiome-dependent mechanism for common metabolic disturbances in humans with aberrant circadian rhythms, such as those documented in shift workers and frequent flyers.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Intolerância à Glucose , Microbiota , Animais , Disbiose/microbiologia , Disbiose/fisiopatologia , Comportamento Alimentar , Homeostase , Humanos , Síndrome do Jet Lag/fisiopatologia , Doenças Metabólicas/microbiologia , Doenças Metabólicas/fisiopatologia , Camundongos , Obesidade/metabolismo , Sono
4.
Cell ; 156(5): 1045-59, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24581500

RESUMO

Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP:


Assuntos
Colo/imunologia , Células Caliciformes/imunologia , Inflamassomos/imunologia , Mucosa Intestinal/imunologia , Receptores de Superfície Celular/imunologia , Animais , Autofagia , Colite/imunologia , Colite/microbiologia , Colo/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Caliciformes/citologia , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Camundongos , Muco/metabolismo
5.
Protein Eng Des Sel ; 25(8): 397-404, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22691704

RESUMO

Recombinant mouse interleukin 22 (mIL-22) and its variants encoding four muteins (Y51A, N54A, R55A and E117A) were expressed in Escherichia coli, refolded and purified to homogeneity as monomeric proteins by one-step ion-exchange chromatography. The binding of IL-22 and its four muteins to immobilized mIL-22 receptor α1 extracellular domain (mIL-22 Rα1-ECD) exhibited similar affinity, indicating that the single-amino-acid mutations do not affect its binding properties. Similarly, no differences were found in binding to IL-22 binding protein expressed on the surface of yeast cells, although the affinity of all five proteins to the binding protein was higher than that to IL-22 Rα1-ECD. In an in vitro bioassay, recombinant mIL-22 stimulated signal transducer and activator of transcription-3 phosphorylation in HepG2 cells, whereas the four muteins were completely (Y51A) or almost completely (N54A, R55A and E117A) devoid of this agonistic activity. Furthermore, the agonistic activity of mIL-22 could be inhibited in a dose-dependent manner by the four muteins with almost identical efficiency. mIL-22 and its Y51A mutein were pegylated by methoxy polyethylene glycol-propionylaldehyde-20 kDa, yielding a mixture of mono (75-80%) and double (20-25%) pegylated proteins. The pegylated proteins showed lower affinity (50 and 25%) toward immobilized mIL-22 Rα1-ECD than their non-pegylated analogs. Wild-type pegylated IL-22 exhibited 5- to 10-fold lower activity in the HepG2 bioassay than its non-pegylated counterpart. Preparation of recombinant mIL-22 antagonists provides new tools for the study of IL-22 activity and of eventual therapeutic means for attenuating its negative effects.


Assuntos
Interleucinas/química , Receptores de Interleucina/antagonistas & inibidores , Substituição de Aminoácidos , Animais , Eletroforese em Gel de Poliacrilamida , Células Hep G2 , Humanos , Interleucinas/genética , Interleucinas/isolamento & purificação , Interleucinas/metabolismo , Camundongos , Fosforilação , Ligação Proteica , Receptores de Interleucina/metabolismo , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/metabolismo , Interleucina 22
6.
J Biol Chem ; 286(6): 4429-42, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21119198

RESUMO

Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin.


Assuntos
Substituição de Aminoácidos , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Leptina/análogos & derivados , Mutação de Sentido Incorreto , Polietilenoglicóis , Animais , Células HEK293 , Humanos , Leptina/antagonistas & inibidores , Leptina/química , Leptina/genética , Leptina/metabolismo , Leptina/farmacologia , Masculino , Camundongos , Mutagênese , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacologia , Ligação Proteica , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
7.
Endocrinology ; 150(7): 3083-91, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19342450

RESUMO

Leptin, a pleiotropic adipokine, is a central regulator of appetite and weight and a key immunomodulatory protein. Although inborn leptin deficiency causes weight gain, it is unclear whether induced leptin deficiency in adult wild-type animals would be orexigenic. Previous work with a potent competitive leptin antagonist did not induce a true metabolic state of leptin deficiency in mice because of a short circulating half-life. In this study, we increased the half-life of the leptin antagonist by pegylation, which resulted in significantly increased bioavailability and retaining of antagonistic activity. Mice administered the pegylated antagonist showed a rapid and dramatic increase in food intake with weight gain. Resulting fat was confined to the mesenteric region with no accumulation in the liver. Serum cholesterol, triglyceride, and hepatic aminotransferases remained unaffected. Weight changes were reversible on cessation of leptin antagonist treatment. The mechanism of severe central leptin deficiency was found to be primarily caused by blockade of transport of circulating leptin across the blood-brain barrier with antagonisms at the arcuate nucleus playing a more minor role. Altogether we introduce a novel compound that induces central and peripheral leptin deficiency. This compound should be useful in exploring the involvement of leptin in metabolic and immune processes and could serve as a therapeutic for the treatment of cachexia.


Assuntos
Leptina/análogos & derivados , Leptina/antagonistas & inibidores , Polietilenoglicóis/farmacologia , Tecido Adiposo/patologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Humanos , Leptina/síntese química , Leptina/metabolismo , Leptina/farmacocinética , Leptina/farmacologia , Masculino , Polietilenoglicóis/síntese química , Polietilenoglicóis/farmacocinética , Aumento de Peso/efeitos dos fármacos
8.
PLoS One ; 4(3): e4776, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19274092

RESUMO

BACKGROUND: Current strategies for follow up of murine models of liver disease are flawed by inability to continuously monitor disease progression in the tissue level, and necessitate sacrifice of animals for tissue sampling. AIMS: In this study we aimed at developing a safe repetitive tool for sampling livers in vivo, by utilization of a miniaturized endoscopy system for laparoscopic liver biopsies and for injection of tumor cells into livers. RESULTS: We report the development of a protocol for murine laparoscopy that allows repeated visualization of murine intra-abdominal organs. The system enables safe and repeated liver biopsies in mice and rats, yielding adequate tissue for histological staining and RNA extraction. In addition, injection of tumor cells into livers facilitates under-vision implantation of hepatic tumors in liver, followed by visualization of tumor growth. CONCLUSIONS: Murine laparoscopy may be employed as a novel imaging modality for continuous assessment and manipulation of chronic liver disease models.


Assuntos
Laparoscopia/métodos , Hepatopatias/diagnóstico , Animais , Biópsia , Diagnóstico por Imagem/métodos , Modelos Animais de Doenças , Hepatopatias/patologia , Camundongos , Transplante de Neoplasias/métodos , Ratos
9.
Hepatology ; 49(1): 278-86, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19065677

RESUMO

UNLABELLED: Leptin signaling is involved in T-cell polarization and is required for profibrotic function of hepatic stellate cells (HSCs). Leptin-deficient ob/ob mice do not develop liver fibrosis despite the presence of severe long-standing steatohepatitis. Here, we blocked leptin signaling with our recently generated mouse leptin antagonist (MLA), and examined the effects on chronic liver fibrosis in vivo using the chronic thioacetamide (TAA) fibrosis model, and in vitro using freshly-isolated primary HSCs. In the chronic TAA fibrosis model, leptin administration was associated with significantly enhanced liver disease and a 100% 5-week to 8-week mortality rate, while administration or coadministration of MLA markedly improved survival, attenuated liver fibrosis, and reduced interferon gamma (IFN-gamma) levels. No significant changes in weight, serum cholesterol, or triglycerides were noted. In vitro administration of rat leptin antagonist (RLA), either alone or with leptin, to rat primary HSCs reduced leptin-stimulated effects such as increased expression of alpha-smooth muscle actin (alpha-SMA), and activation of alpha1 procollagen promoter. CONCLUSION: Inhibition of leptin-enhanced hepatic fibrosis may hold promise as a future antifibrotic therapeutic modality.


Assuntos
Células Estreladas do Fígado/fisiologia , Antagonistas de Hormônios/farmacologia , Leptina/antagonistas & inibidores , Leptina/fisiologia , Cirrose Hepática/tratamento farmacológico , Animais , Feminino , Células Estreladas do Fígado/efeitos dos fármacos , Antagonistas de Hormônios/uso terapêutico , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Camundongos , Modelos Animais , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos , Transdução de Sinais/fisiologia , Tioacetamida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...