Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 5(5): 742-759, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429414

RESUMO

Successful immunotherapy relies on triggering complex responses involving T cell dynamics in tumors and the periphery. Characterizing these responses remains challenging using static human single-cell atlases or mouse models. To address this, we developed a framework for in vivo tracking of tumor-specific CD8+ T cells over time and at single-cell resolution. Our tools facilitate the modeling of gene program dynamics in the tumor microenvironment (TME) and the tumor-draining lymph node (tdLN). Using this approach, we characterize two modes of anti-programmed cell death protein 1 (PD-1) activity, decoupling induced differentiation of tumor-specific activated precursor cells from conventional type 1 dendritic cell (cDC1)-dependent proliferation and recruitment to the TME. We demonstrate that combining anti-PD-1 therapy with anti-4-1BB agonist enhances the recruitment and proliferation of activated precursors, resulting in tumor control. These data suggest that effective response to anti-PD-1 therapy is dependent on sufficient influx of activated precursor CD8+ cells to the TME and highlight the importance of understanding system-level dynamics in optimizing immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Microambiente Tumoral , Animais , Camundongos , Imunoterapia/métodos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Microambiente Tumoral/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Linhagem Celular Tumoral
2.
Cell ; 187(1): 149-165.e23, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38134933

RESUMO

Deciphering the cell-state transitions underlying immune adaptation across time is fundamental for advancing biology. Empirical in vivo genomic technologies that capture cellular dynamics are currently lacking. We present Zman-seq, a single-cell technology recording transcriptomic dynamics across time by introducing time stamps into circulating immune cells, tracking them in tissues for days. Applying Zman-seq resolved cell-state and molecular trajectories of the dysfunctional immune microenvironment in glioblastoma. Within 24 hours of tumor infiltration, cytotoxic natural killer cells transitioned to a dysfunctional program regulated by TGFB1 signaling. Infiltrating monocytes differentiated into immunosuppressive macrophages, characterized by the upregulation of suppressive myeloid checkpoints Trem2, Il18bp, and Arg1, over 36 to 48 hours. Treatment with an antagonistic anti-TREM2 antibody reshaped the tumor microenvironment by redirecting the monocyte trajectory toward pro-inflammatory macrophages. Zman-seq is a broadly applicable technology, enabling empirical measurements of differentiation trajectories, which can enhance the development of more efficacious immunotherapies.


Assuntos
Glioblastoma , Humanos , Perfilação da Expressão Gênica , Glioblastoma/patologia , Imunoterapia , Células Matadoras Naturais , Macrófagos , Microambiente Tumoral , Análise de Célula Única
3.
Sci Transl Med ; 15(697): eadf2281, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224228

RESUMO

Glioblastoma is the most aggressive primary brain tumor with an unmet need for more effective therapies. Here, we investigated combination therapies based on L19TNF, an antibody-cytokine fusion protein based on tumor necrosis factor that selectively localizes to cancer neovasculature. Using immunocompetent orthotopic glioma mouse models, we identified strong anti-glioma activity of L19TNF in combination with the alkylating agent CCNU, which cured the majority of tumor-bearing mice, whereas monotherapies only had limited efficacy. In situ and ex vivo immunophenotypic and molecular profiling in the mouse models revealed that L19TNF and CCNU induced tumor DNA damage and treatment-associated tumor necrosis. In addition, this combination also up-regulated tumor endothelial cell adhesion molecules, promoted the infiltration of immune cells into the tumor, induced immunostimulatory pathways, and decreased immunosuppression pathways. MHC immunopeptidomics demonstrated that L19TNF and CCNU increased antigen presentation on MHC class I molecules. The antitumor activity was T cell dependent and completely abrogated in immunodeficient mouse models. On the basis of these encouraging results, we translated this treatment combination to patients with glioblastoma. The clinical translation is ongoing but already shows objective responses in three of five patients in the first recurrent glioblastoma patient cohort treated with L19TNF in combination with CCNU (NCT04573192).


Assuntos
Glioblastoma , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Linfócitos T , Recidiva Local de Neoplasia , Fator de Necrose Tumoral alfa , Modelos Animais de Doenças , Lomustina
4.
Cancer Discov ; 13(7): 1546-1555, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219074

RESUMO

Chimeric antigen receptor (CAR) T therapies hold immense promise to revolutionize cancer treatment. Nevertheless, key challenges, primarily in solid tumor settings, continue to hinder the application of this technology. Understanding CAR T-cell mechanism of action, in vivo activity, and clinical implications is essential for harnessing its full therapeutic potential. Single-cell genomics and cell engineering tools are becoming increasingly effective for the comprehensive research of complex biological systems. The convergence of these two technologies can accelerate CAR T-cell development. Here, we examine the potential of applying single-cell multiomics for the development of next-generation CAR T-cell therapies. SIGNIFICANCE: Although CAR T-cell therapies have demonstrated remarkable clinical results in treating cancer, their effectiveness in most patients and tumor types remains limited. Single-cell technologies, which are transforming our understanding of molecular biology, provide new opportunities to overcome the challenges of CAR T-cell therapies. Given the potential of CAR T-cell therapy to tip the balance in the fight against cancer, it is important to understand how single-cell multiomic approaches can be leveraged to develop the next generations of more effective and less toxic CAR T-cell products and to provide powerful decision-making tools for clinicians to optimize treatment and improve patient outcomes.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Assistência ao Paciente , Diferenciação Celular , Genômica , Imunoterapia Adotiva , Tecnologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética
5.
Nat Med ; 29(5): 1191-1200, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37106166

RESUMO

Erythropoietin (Epo) is the master regulator of erythropoiesis and oxygen homeostasis. Despite its physiological importance, the molecular and genomic contexts of the cells responsible for renal Epo production remain unclear, limiting more-effective therapies for anemia. Here, we performed single-cell RNA and transposase-accessible chromatin (ATAC) sequencing of an Epo reporter mouse to molecularly identify Epo-producing cells under hypoxic conditions. Our data indicate that a distinct population of kidney stroma, which we term Norn cells, is the major source of endocrine Epo production in mice. We use these datasets to identify the markers, signaling pathways and transcriptional circuits characteristic of Norn cells. Using single-cell RNA sequencing and RNA in situ hybridization in human kidney tissues, we further provide evidence that this cell population is conserved in humans. These preliminary findings open new avenues to functionally dissect EPO gene regulation in health and disease and may serve as groundwork to improve erythropoiesis-stimulating therapies.


Assuntos
Anemia , Eritropoetina , Animais , Humanos , Camundongos , Anemia/genética , Eritropoese/genética , Eritropoetina/genética , Rim/metabolismo , RNA/metabolismo
6.
Nat Cancer ; 3(3): 287-302, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35190724

RESUMO

Therapeutic use of agonistic anti-CD40 antibodies is a potentially powerful approach for activation of the immune response to eradicate tumors. However, the translation of this approach to clinical practice has been substantially restricted due to the severe dose-limiting toxicities observed in multiple clinical trials. Here, we demonstrate that conventional type 1 dendritic cells are essential for triggering antitumor immunity but not the toxicity of CD40 agonists, while macrophages, platelets and monocytes lead to toxic events. Therefore, we designed bispecific antibodies that target CD40 activation preferentially to dendritic cells, by coupling the CD40 agonist arm with CD11c-, DEC-205- or CLEC9A-targeting arms. These bispecific reagents demonstrate a superior safety profile compared to their parental CD40 monospecific antibody while triggering potent antitumor activity. We suggest such cell-selective bispecific agonistic antibodies as a drug platform to bypass the dose-limiting toxicities of anti-CD40, and of additional types of agonistic antibodies used for cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Anticorpos Biespecíficos/farmacologia , Antígenos CD40 , Células Dendríticas , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico
7.
Cell ; 182(4): 872-885.e19, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32783915

RESUMO

Cell function and activity are regulated through integration of signaling, epigenetic, transcriptional, and metabolic pathways. Here, we introduce INs-seq, an integrated technology for massively parallel recording of single-cell RNA sequencing (scRNA-seq) and intracellular protein activity. We demonstrate the broad utility of INs-seq for discovering new immune subsets by profiling different intracellular signatures of immune signaling, transcription factor combinations, and metabolic activity. Comprehensive mapping of Arginase 1-expressing cells within tumor models, a metabolic immune signature of suppressive activity, discovers novel Arg1+ Trem2+ regulatory myeloid (Mreg) cells and identifies markers, metabolic activity, and pathways associated with these cells. Genetic ablation of Trem2 in mice inhibits accumulation of intra-tumoral Mreg cells, leading to a marked decrease in dysfunctional CD8+ T cells and reduced tumor growth. This study establishes INs-seq as a broadly applicable technology for elucidating integrated transcriptional and intra-cellular maps and identifies the molecular signature of myeloid suppressive cells in tumors.


Assuntos
Glicoproteínas de Membrana/metabolismo , Neoplasias/patologia , RNA Citoplasmático Pequeno/química , Receptores Imunológicos/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Receptores Imunológicos/genética , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...