Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 106(2): 145-55, 2001 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-11511343

RESUMO

The multivesicular body (MVB) pathway is responsible for both the biosynthetic delivery of lysosomal hydrolases and the downregulation of numerous activated cell surface receptors which are degraded in the lysosome. We demonstrate that ubiquitination serves as a signal for sorting into the MVB pathway. In addition, we characterize a 350 kDa complex, ESCRT-I (composed of Vps23, Vps28, and Vps37), that recognizes ubiquitinated MVB cargo and whose function is required for sorting into MVB vesicles. This recognition event depends on a conserved UBC-like domain in Vps23. We propose that ESCRT-I represents a conserved component of the endosomal sorting machinery that functions in both yeast and mammalian cells to couple ubiquitin modification to protein sorting and receptor downregulation in the MVB pathway.


Assuntos
Proteínas de Transporte/metabolismo , Endossomos/química , Endossomos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Proteínas de Transporte Vesicular , Sequência de Aminoácidos , Carboxipeptidases/química , Carboxipeptidases/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Lisossomos/química , Lisossomos/enzimologia , Lisossomos/metabolismo , Substâncias Macromoleculares , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Vesículas Transportadoras/química , Vesículas Transportadoras/enzimologia , Vesículas Transportadoras/metabolismo
2.
Mol Biol Cell ; 12(1): 37-51, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11160821

RESUMO

Transport of proteins through the ALP (alkaline phosphatase) pathway to the vacuole requires the function of the AP-3 adaptor complex and Vps41p. However, unlike other adaptor protein-dependent pathways, the ALP pathway has not been shown to require additional accessory proteins or coat proteins, such as membrane recruitment factors or clathrin. Two independent genetic approaches have been used to identify new mutants that affect transport through the ALP pathway. These screens yielded new mutants in both VPS41 and the four AP-3 subunit genes. Two new VPS41 alleles exhibited phenotypes distinct from null mutants of VPS41, which are defective in vacuolar morphology and protein transport through both the ALP and CPY sorting pathways. The new alleles displayed severe ALP sorting defects, normal vacuolar morphology, and defects in ALP vesicle formation at the Golgi complex. Sequencing analysis of these VPS41 alleles revealed mutations encoding amino acid changes in two distinct domains of Vps41p: a conserved N-terminal domain and a C-terminal clathrin heavy-chain repeat (CHCR) domain. We demonstrate that the N-terminus of Vps41p is required for binding to AP-3, whereas the C-terminal CHCR domain directs homo-oligomerization of Vps41p. These data indicate that a homo-oligomeric form of Vps41p is required for the formation of ALP containing vesicles at the Golgi complex via interactions with AP-3.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/farmacologia , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Montagem de Clatrina , Proteínas Nucleares , Proteínas de Ligação a RNA/farmacologia , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Proteínas Adaptadoras de Transporte Vesicular , Alelos , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Clatrina/genética , Clatrina/farmacologia , Cadeias Pesadas de Clatrina , Dimerização , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/farmacologia , Dados de Sequência Molecular , Mutação , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/química , Alinhamento de Sequência , Vesículas Transportadoras/efeitos dos fármacos
3.
Nat Cell Biol ; 1(6): 346-53, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10559961

RESUMO

Transport of a subset of membrane proteins to the yeast vacuole requires the function of the AP-3 adaptor protein complex. To define the molecular requirements of vesicular transport in this pathway, we used a biochemical approach to analyse the formation and content of the AP-3 transport intermediate. A vam3tsf (vacuolar t-SNARE) mutant blocks vesicle docking and fusion with the vacuole and causes the accumulation of 50-130-nanometre membrane vesicles, which we isolated and showed by biochemical analysis and immunocytochemistry to contain both AP-3 adaptors and alkaline phosphatase (ALP) pathway cargoes. Inactivation of AP-3 or the protein Vps41 blocks formation of this vesicular intermediate. Vps41 binds to the AP-3 delta-adaptin subunit, suggesting that they function together in the formation of ALP pathway transport intermediates at the late Golgi.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Montagem de Clatrina , Proteínas Nucleares , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Subunidades alfa do Complexo de Proteínas Adaptadoras , Proteínas Adaptadoras de Transporte Vesicular , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Compartimento Celular , Membrana Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Proteínas de Membrana/genética , Mutagênese , Proteínas Qa-SNARE , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Vacúolos/metabolismo
4.
Mol Cell Biol ; 19(4): 2998-3009, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10082567

RESUMO

The ATP binding cassette (ABC) transporter protein Yor1p was identified on the basis of its ability to elevate oligomycin resistance when it was overproduced from a high-copy-number plasmid. Analysis of the predicted amino acid sequence of Yor1p indicated that this protein was a new member of a subfamily of ABC transporter proteins defined by the multidrug resistance protein (MRP). In this work, Yor1p is demonstrated to localize to the Saccharomyces cerevisiae plasma membrane by both indirect immunofluorescence and biochemical fractionation studies. Several mutations were generated in the amino-terminal nucleotide binding domain (NBD1) of Yor1p to test if the high degree of sequence conservation in this region of the protein was important for function. Deletion of a phenylalanine residue at Yor1p position 670 led to a mutant protein that appeared to be retained in the endoplasmic reticulum (ER) and that was unstable. As shown by others, deletion of the analogous residue from a second mammalian MRP family member, the cystic fibrosis transmembrane conductance regulator (CFTR), also led to retention of this normally plasma membrane-localized protein in the ER. Changes in the spacing between or the sequences flanking functional motifs of Yor1p NBD1 led to defective trafficking or decreased activity of the mutant proteins. Analyses of the degradation of wild-type and DeltaF670 Yor1p indicated that the half-life of DeltaF670 Yor1p was dramatically shortened. While the vacuole was the primary site for turnover of wild-type Yor1p, degradation of DeltaF670 Yor1p was found to be more complex with both proteasomal and vacuolar contributions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Resistência a Múltiplos Medicamentos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Sequência de Aminoácidos , Transporte Biológico , Compartimento Celular , Fracionamento Celular , Sequência Conservada , Cisteína Endopeptidases/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística , Resistência Microbiana a Medicamentos , Retículo Endoplasmático , Técnica Indireta de Fluorescência para Anticorpo , Complexos Multienzimáticos/metabolismo , Mutagênese , Complexo de Endopeptidases do Proteassoma , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
5.
Mol Cell Biol ; 18(3): 1147-55, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9488429

RESUMO

Multiple or pleiotropic drug resistance in the yeast Saccharomyces cerevisiae requires the expression of several ATP binding cassette transporter-encoding genes under the control of the zinc finger-containing transcription factor Pdrlp. The ATP binding cassette transporter-encoding genes regulated by Pdrlp include PDR5 and YOR1, which are required for normal cycloheximide and oligomycin tolerances, respectively. We have isolated a new member of the PDR gene family that encodes a member of the Hsp70 family of proteins found in this organism. This gene has been designated PDR13 and is required for normal growth. Overexpression of Pdr13p leads to an increase in both the expression of PDR5 and YOR1 and a corresponding enhancement in drug resistance. Pdr13p requires the presence of both the PDR1 structural gene and the Pdr1p binding sites in target promoters to mediate its effect on drug resistance and gene expression. A dominant, gain-of-function mutant allele of PDR13 was isolated and shown to have the same phenotypic effects as when the gene is present on a 2microm plasmid. Genetic and Western blotting experiments indicated that Pdr13p exerts its effect on Pdr1p at a posttranslational step. These data support the view that Pdr13p influences pleiotropic drug resistance by enhancing the function of the transcriptional regulatory protein Pdr1p.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Dedos de Zinco , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Cicloeximida/farmacologia , Proteínas de Ligação a DNA/genética , Resistência Microbiana a Medicamentos/genética , Proteínas Fúngicas/genética , Deleção de Genes , Dosagem de Genes , Expressão Gênica , Genes Fúngicos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transativadores/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
6.
J Biol Chem ; 271(38): 23049-54, 1996 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-8798494

RESUMO

Saccharomyces cerevisiae has large number of genes that can be genetically altered to produce a multiple or pleiotropic drug resistance phenotype. The homologous zinc finger transcription factors Pdr1p and Pdr3p both elevate resistance to many drugs, including cycloheximide. This elevation in cycloheximide tolerance only occurs in the presence of an intact copy of the PDR5 gene that encodes a plasma membrane-localized ATP binding cassette transporter protein. Previously, we have found that a single binding site for Pdr3p present in the PDR5 promoter is sufficient to provide Pdr3p-responsive gene expression. In this study, we have found that there are three sites in the PDR5 5'-noncoding region that are closely related to one another and are bound by both Pdr1p and Pdr3p. These elements have been designated Pdr1p/Pdr3p response elements (PDREs), and their role in the maintenance of normal PDR5 expression has been analyzed. Mutations have been constructed in each PDRE and shown to eliminate Pdr1p/Pdr3p binding in vitro. Analysis of the effect of these mutant PDREs on normal PDR5 promoter function indicates that each element is required for wild-type expression and drug resistance. A single PDRE placed upstream of a yeast gene lacking its normal upstream activation sequence is sufficient to confer Pdr1p responsiveness to this heterologous promoter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/biossíntese , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Análise Mutacional de DNA , Resistência a Múltiplos Medicamentos/genética , Oligonucleotídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Deleção de Sequência
7.
Mol Cell Biol ; 15(12): 6875-83, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8524254

RESUMO

Semidominant mutations in the PDR1 or PDR3 gene lead to elevated resistance to cycloheximide and oligomycin. PDR1 and PDR3 have been demonstrated to encode zinc cluster transcription factors. Cycloheximide resistance mediated by PDR1 and PDR3 requires the presence of the PDR5 membrane transporter-encoding gene. However, PDR5 is not required for oligomycin resistance. Here, we isolated a gene that is necessary for PDR1- and PDR3-mediated oligomycin resistance. This locus, designated YOR1, causes a dramatic elevation in oligomycin resistance when present in multiple copies. A yor1 strain exhibits oligomycin hypersensitivity relative to an isogenic wild-type strain. In addition, loss of the YOR1 gene blocks the elevation in oligomycin resistance normally conferred by mutant forms of PDR1 or PDR3. The YOR1 gene product is predicted to be a member of the ATP-binding cassette transporter family of membrane proteins. Computer alignment indicates that Yor1p shows striking sequence similarity with multidrug resistance-associated protein, Saccharomyces cerevisiae Ycf1p, and the cystic fibrosis transmembrane conductance regulator. Use of a YOR1-lacZ fusion gene indicates that YOR1 expression is responsive to PDR1 and PDR3. While PDR5 expression is strictly dependent on the presence of PDR1 or PDR3, control of YOR1 expression has a significant PDR1/PDR3-independent component. Taken together, these data indicate that YOR1 provides the link between transcriptional regulation by PDR1 and PDR3 and oligomycin resistance of yeast cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Resistência Microbiana a Medicamentos/genética , Expressão Gênica , Oligomicinas/farmacologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transativadores , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Gene ; 167(1-2): 151-5, 1995 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-8566768

RESUMO

The yeast PDR1 locus encodes a member of the C6 zinc cluster family of transcriptional regulatory proteins. Among the targets of PDR1 is the yeast PDR5 locus. The product of this gene is a member of the ATP-binding cassette (ABC) transmembrane protein family and plays a major role in inhibitor efflux. Mutations in PDR1 affect the relative level of PDR5 transcript and can therefore result in increased or decreased drug resistance. We isolated three second-site suppressors of a PDR1-7 semidominant hyper-resistant mutation. These mutants were drug hypersensitive, as compared with isogenic controls. Two of the three mutations contained alterations in a putative DNA-binding domain. Significantly, the mutant proteins exhibited reduced DNA-binding capacity.


Assuntos
Resistência a Múltiplos Medicamentos , Saccharomyces cerevisiae/genética , Transativadores , Fatores de Transcrição/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Alelos , Sequência de Bases , Primers do DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Supressores , Substâncias Macromoleculares , Dados de Sequência Molecular , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae , Transcrição Gênica
9.
Mol Cell Biol ; 14(7): 4653-61, 1994 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8007969

RESUMO

Saccharomyces cerevisiae cells possess the ability to simultaneously acquire resistance to an array of drugs with different cytotoxic activities. The genes involved in this acquisition are referred to as pleiotropic drug resistant (PDR) genes. Several semidominant, drug resistance-encoding PDR mutations have been found that map near the centromere on chromosome II, including PDR3-1 and PDR4-1. DNA sequencing of chromosome II identified a potential open reading frame, designated YBL03-23, that has the potential to encode a protein with strong sequence similarity to the product of the PDR1 gene, a zinc finger-containing transcription factor. Here we show that YBL03-23 is allelic with PDR3. The presence of a functional copy of either PDR1 or PDR3 is essential for drug resistance and expression of a putative membrane transporter-encoding gene, PDR5. Deletion mapping of the PDR5 promoter identified a region from -360 to -112 that is essential for expression of this gene. DNase I footprinting analysis using bacterially expressed Pdr3p showed specific recognition by this protein of at least one site in the -360/-112 interval in the PDR5 promoter. A high-copy-number plasmid carrying the PDR3 gene elevated resistance to both oligomycin and cycloheximide. Increasing the number of PDR3 gene copies in a delta pdr5 strain increased oligomycin resistance but was not able to correct the cycloheximide hypersensitivity that results from loss of PDR5. These data are consistent with the notion that PDR3 acts to increase cycloheximide resistance by elevating the level of PDR5 transcription, while PDR3-mediated oligomycin resistance acts through some other target gene.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Transporte/biossíntese , Proteínas Fúngicas/biossíntese , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Proteínas de Membrana/biossíntese , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transcrição Gênica , Sequência de Bases , Proteínas de Transporte/genética , Clonagem Molecular , Primers do DNA , Escherichia coli , Proteínas de Membrana/genética , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , beta-Galactosidase/biossíntese , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...