Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pain ; 26(3): 634-647, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34767278

RESUMO

BACKGROUND: Nerve injury can lead to ectopic activation of injured nociceptorsand central sensitization characterized by allodynia and hyperalgesia. Reduction in the activity of primary afferent neurons has been shown to be sufficient in alleviating peripherally generated pain. The cell bodies of such trigeminal nociceptors are located in the trigeminal ganglia (TG) with central processes that terminate in the brainstem trigeminal nucleus caudalis (TNC). The TG is therefore a strategic locus where afferent input can be manipulated. We hypothesized that chemogenetic inhibition of TG would suppress TNC neuronal activity and attenuate pain behaviour in a rat model of painful traumatic trigeminal neuropathy (PTTN). METHODS: Trigeminal neuropathic pain was induced in adult male Sprague-Dawley rats (n = 24) via chronic constriction injury to the infraorbital nerve (ION-CCI). Naïve and sham rats were used as controls (n = 20/group). Rats within each group received TG-directed microinjections of AAV virus containing either the inhibitory hM4Di-DREADD construct or EGFP. RESULTS: In the ION-CCI group, systemic administration of the DREADD agonist clozapine N-oxide (CNO) reversed the hypersensitivity phenotype in animals expressing hM4Di but not EGFP. CNO-mediated activation of hM4Di DREADD in ION-CCI animals was also associated with reduced Fos expression in the TNC elicited by repeated mechanical stimulation of the dermatome ipsilateral to the injury. There was no effect of CNO on pain behaviour or TNC Fos expression in eGFP animals. CONCLUSION: Our results indicate that DREADDs may offer an effective therapeutic approach for treatment of trigeminal neuropathic pain. SIGNIFICANCE: Trigeminal neuropathic pain is highly resistant to therapy and we are in dire need of novel approaches. This study provides further evidence for the successful application of DREADDs as an effective tool for modulating central nervous system function. CNO mediated activation of hM4Di-DREADDs in the trigeminal ganglion (TG) attenuates nerve injury induced neuropathic pain by acting on hyperactive TG cells. It also establishes the TG as an effective target to manage pain in the face and head. Accessing the TG in clinical populations is a relatively simple and safe procedure, making this approach highly significant. Moreover, the methodology described here has applications in trigeminal neuropathic pain from traumatic other etiologies and in spinal neuropathic pain. Chronic pain syndromes are characterized by a progressive failure of brain centers to adequately inhibit pain and as these are identified, we may be able to target them for therapy. Therefore, our findings might have wide application in chronic pain syndromes.


Assuntos
Neuralgia , Neuralgia do Trigêmeo , Animais , Hiperalgesia , Masculino , Neuralgia/tratamento farmacológico , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Gânglio Trigeminal/metabolismo , Neuralgia do Trigêmeo/tratamento farmacológico
2.
Eur J Oral Sci ; 129(4): e12786, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33786877

RESUMO

Melanocortin-4 receptor (MC4R) has been investigated as a potential drug target for the treatment of neuropathic pain. The objective of the study was to systematically identify the effects of MC4R antagonists on hypersensitivity in rat models of neuropathic pain. A systematic search was conducted using the following databases: WoS, PubMed, SCOPUS, and MEDLINE. Inclusion criteria were: rat hypersensitivity induced by models of neuropathic pain with reported effects of MC4R antagonist. Two researchers performed the selection process and data extraction. SYRCLE risk of bias tool was used. Standard mean differences (SMD) were calculated and pooled by meta-analysis using random effect models. Ten articles met the eligibility criteria and were included in the systematic review and meta-analysis. The results reveal that, in animals exposed to neuropathic pain, administration of MC4R antagonists significantly increased paw withdrawal threshold (SHU9119 SMD = 1.67, 95% CI: [0.91, 2.44], I2  = 0%; HS014 SMD = 2.2, 95% CI: [0.53, 3.87], I2  = 71%) and heat withdrawal latency (HS014 SMD = 3.35, 95% CI: [0.56, 6.14], I2  = 83%) compared to vehicle-treated animals. MC4R antagonists are effective in the alleviation of hypersensitivity in rodent neuropathic pain models. SHU9119 and HS014 antagonists showed the most prominent results. However, further investigation is needed to determine the optimal dose and time of treatment.


Assuntos
Neuralgia , Receptor Tipo 4 de Melanocortina , Animais , Modelos Animais de Doenças , Hiperalgesia , Neuralgia/tratamento farmacológico , Ratos
4.
Eur J Pain ; 24(5): 967-982, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32100907

RESUMO

BACKGROUND: The dorsal root (DRG) and trigeminal (TG) ganglia contain cell bodies of sensory neurons of spinal and trigeminal systems, respectively. They are homologs of each other; however, differences in how the two systems respond to injury exist. Trigeminal nerve injuries rarely result in chronic neuropathic pain (NP). To date, no genes involved in the differential response to nerve injury between the two systems have been identified. We examined transcriptional changes involved in the development of trigeminal and spinal NP. METHODS: Trigeminal and spinal mononueropathies were induced by chronic constriction injury to the infraorbital or sciatic nerve. Expression levels of 84 genes in the TG and DRG at 4, 8 and 21 days post-injury were measured using real-time PCR. RESULTS: We found time-dependent and ganglion-specific transcriptional regulation that may contribute to the development of corresponding neuropathies. Among genes significantly regulated in both ganglia Cnr2, Grm5, Htr1a, Il10, Oprd1, Pdyn, Prok2 and Tacr1 were up-regulated in the TG but down-regulated in the DRG at 4 days post-injury; at 21 days post-injury, Adora1, Cd200, Comt, Maob, Mapk3, P2rx4, Ptger1, Tnf and Slc6a2 were significantly up-regulated in the TG but down-regulated in the DRG. CONCLUSIONS: Our findings suggest that spinal and trigeminal neuropathies due to trauma are differentially regulated. Subtle but important differences between the two ganglia may affect NP development. SIGNIFICANCE: We present distinct transcriptional alterations in the TG and DRG that may contribute to differences observed in the corresponding mononeuropathies. Since the trigeminal system seems more resistant to developing NP following trauma our findings lay ground for future research to detect genes and pathways that may act in a protective or facilitatory manner. These may be novel and important therapeutic targets.


Assuntos
Traumatismos dos Nervos Periféricos , Gânglio Trigeminal , Animais , Gânglios Espinais , Expressão Gênica , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Traumatismos dos Nervos Periféricos/genética , Ratos , Raízes Nervosas Espinhais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...