Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Phys J B ; 95(4): 69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531566

RESUMO

Abstract: The parquet approach to vertex corrections is unbiased but computationally demanding. Most applications are therefore restricted to small cluster sizes or rely on various simplifying approximations. We have recently shown that the bosonization of the parquet diagrams provides interpretative and algorithmic advantages over the original purely fermionic formulation. Here, we present first results of the numerical implementation of this method by applying it to the half-filled Hubbard model on the square lattice at weak coupling. The improved algorithmic performance allows us to evaluate the parquet approximation for a 16 × 16 lattice, retaining the full momentum and frequency structure of the various vertex functions. We discuss their symmetries and consider parametrizations of their momentum dependence using the truncated-unity approximation.

2.
Eur Phys J Plus ; 135(11): 922, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240742

RESUMO

We present a straightforward implementation scheme for solving the time-dependent Schrödinger equation for systems described by the Hubbard Hamiltonian with time-dependent hoppings. The computations can be performed for clusters of up to 14 sites with, in principle, general geometry. For the time evolution, we use the exponential midpoint rule, where the exponentials are computed via a Krylov subspace method, which only uses matrix-vector multiplication. The presented implementation uses standard libraries for constructing sparse matrices and for linear algebra. Therefore, the approach is easy to use on both desktop computers and computational clusters. We apply the method to calculate time evolution of double occupation and nonequilibrium spectral function of a photo-excited Mott-insulator. The results show that not only the double occupation increases due to creation of electron-hole pairs but also the Mott gap becomes partially filled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA