Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0052824, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916293

RESUMO

Xenorhabdus nematophila is a symbiotic Gammaproteobacterium that produces diverse natural products that facilitate mutualistic and pathogenic interactions in their nematode and insect hosts, respectively. The interplay between X. nematophila secondary metabolism and symbiosis stage is tuned by various global regulators. An example of such a regulator is the LysR-type protein transcription factor LrhA, which regulates amino acid metabolism and is necessary for virulence in insects and normal nematode progeny production. Here, we utilized comparative metabolomics and molecular networking to identify small molecule factors regulated by LrhA and characterized a rare γ-ketoacid (GKA) and two new N-acyl amides, GKA-Arg (1) and GKA-Pro (2) which harbor a γ-keto acyl appendage. A lrhA null mutant produced elevated levels of compound 1 and reduced levels of compound 2 relative to wild type. N-acyl amides 1 and 2 were shown to be selective agonists for the human G-protein-coupled receptors (GPCRs) C3AR1 and CHRM2, respectively. The CHRM2 agonist 2 deleteriously affected the hatch rate and length of Steinernema nematodes. This work further highlights the utility of exploiting regulators of host-bacteria interactions for the identification of the bioactive small molecule signals that they control. IMPORTANCE: Xenorhabdus bacteria are of interest due to their symbiotic relationship with Steinernema nematodes and their ability to produce a variety of natural bioactive compounds. Despite their importance, the regulatory hierarchy connecting specific natural products and their regulators is poorly understood. In this study, comparative metabolomic profiling was utilized to identify the secondary metabolites modulated by the X. nematophila global regulator LrhA. This analysis led to the discovery of three metabolites, including an N-acyl amide that inhibited the egg hatching rate and length of Steinernema carpocapsae nematodes. These findings support the notion that X. nematophila LrhA influences the symbiosis between X. nematophila and S. carpocapsae through N-acyl amide signaling. A deeper understanding of the regulatory hierarchy of these natural products could contribute to a better comprehension of the symbiotic relationship between X. nematophila and S. carpocapsae.

2.
J Control Release ; 355: 434-445, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758834

RESUMO

Most patients that will be treated with soft nanoparticles (NPs) will be obese. Yet, NP testing, which begins with pharmacokinetic (PK) and toxicity studies, is carried out almost exclusively in lean rodents having healthy livers and low inflammation. To address this knowledge gap, we determined the PK and toxicity of tail-vein-injected, PEG-based cylindrical nanoparticles (CNPs) and PEGylated liposomes (PLs) as a function of obesity, liver health, and inflammation in leptin-deficient ob/ob and wild-type C57BL/6 J mice. CNPs localized faster to obese livers than to healthy livers within 24 h of injection. PLs localized faster to obese livers than to healthy livers but only 30 min post-injection. Afterwards PL localization to lean livers was higher than localization to obese livers. Overall, PL liver signal peaked ∼6 h post-injection in lean mice, ∼24 h post-injection in heavy mice, and âˆ¼ 48 h post-injection in obese mice. CNPs and PLs were non-toxic to mouse livers as assessed by histology; they reduced many cytokine and chemokine levels that were elevated by obesity. Liver macrophage depletion reduced CNP and PL liver localization as expected; liver sinusoidal endothelial cell (LSEC) depletion reduced PL liver localization but surprisingly increased CNP liver localization. The intensity of RAW264.7 macrophages was higher after CNP incubations than with PL incubations; conversely, the intensity of LSECs was higher after PL incubations than with CNP incubations. This shows the potential for key differences in NP-liver interactions. Triggering inflammation by administering lipopolysaccharide (LPS) to mice increased CNP liver localization but decreased PL liver localization. The results show that obesity and inflammation in a mouse model and in vitro affect soft PEG-based NP interaction with macrophages and LSECs, but also that these NPs can reduce pro-inflammatory pathways increased by obesity.


Assuntos
Fígado , Nanopartículas , Camundongos , Animais , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Obesidade/metabolismo , Inflamação/patologia , Lipossomos/metabolismo , Camundongos Obesos
3.
mSystems ; 7(3): e0031222, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35543104

RESUMO

Microbial symbiosis drives physiological processes of higher-order systems, including the acquisition and consumption of nutrients that support symbiotic partner reproduction. Metabolic analytics provide new avenues to examine how chemical ecology, or the conversion of existing biomass to new forms, changes over a symbiotic life cycle. We applied these approaches to the nematode Steinernema carpocapsae, its mutualist bacterium, Xenorhabdus nematophila, and the insects they infect. The nematode-bacterium pair infects, kills, and reproduces in an insect until nutrients are depleted. To understand the conversion of insect biomass over time into either nematode or bacterium biomass, we integrated information from trophic, metabolomic, and gene regulation analyses. Trophic analysis established bacteria as meso-predators and primary insect consumers. Nematodes hold a trophic position of 4.6, indicative of an apex predator, consuming bacteria and likely other nematodes. Metabolic changes associated with Galleria mellonella insect bioconversion were assessed using multivariate statistical analyses of metabolomics data sets derived from sampling over an infection time course. Statistically significant, discrete phases were detected, indicating the insect chemical environment changes reproducibly during bioconversion. A novel hierarchical clustering method was designed to probe molecular abundance fluctuation patterns over time, revealing distinct metabolite clusters that exhibit similar abundance shifts across the time course. Composite data suggest bacterial tryptophan and nematode kynurenine pathways are coordinated for reciprocal exchange of tryptophan and NAD+ and for synthesis of intermediates that can have complex effects on bacterial phenotypes and nematode behaviors. Our analysis of pathways and metabolites reveals the chemistry underlying the recycling of organic material during carnivory. IMPORTANCE The processes by which organic life is consumed and reborn in a complex ecosystem were investigated through a multiomics approach applied to the tripartite Xenorhabdus bacterium-Steinernema nematode-Galleria insect symbiosis. Trophic analyses demonstrate the primary consumers of the insect are the bacteria, and the nematode in turn consumes the bacteria. This suggests the Steinernema-Xenorhabdus mutualism is a form of agriculture in which the nematode cultivates the bacterial food sources by inoculating them into insect hosts. Metabolomics analysis revealed a shift in biological material throughout progression of the life cycle: active infection, insect death, and conversion of cadaver tissues into bacterial biomass and nematode tissue. We show that each phase of the life cycle is metabolically distinct, with significant differences including those in the tricarboxylic acid cycle and amino acid pathways. Our findings demonstrate that symbiotic life cycles can be defined by reproducible stage-specific chemical signatures, enhancing our broad understanding of metabolic processes that underpin a three-way symbiosis.


Assuntos
Mariposas , Rabditídios , Xenorhabdus , Animais , Ecossistema , Triptofano , Insetos , Xenorhabdus/genética , Rabditídios/microbiologia
4.
J Control Release ; 337: 448-457, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352314

RESUMO

Targeting cell-surface receptors with nanoparticles (NPs) is a crucial aspect of nanomedicine. Here, we show that soft, flexible, elongated NPs with poly-ethylene-oxide (PEO) exteriors and poly-butadiene (PBD) interiors - PEO-PBD filomicelles - interact directly with the major high-density lipoprotein (HDL) receptor and SARS-CoV-2 uptake factor, SR-BI. Filomicelles have a ~ 6-fold stronger interaction with reconstituted SR-BI than PEO-PBD spheres. HDL, and the lipid transport inhibitor, BLT-1, both block the uptake of filomicelles by macrophages and Idla7 cells, the latter are constitutively expressing SR-BI (Idla7-SR-BI). Co-injections of HDL and filomicelles into wild-type mice reduced filomicelle signal in the liver and increased filomicelle plasma levels. The same was true with SCARB1-/- mice. SR-BI binding is followed by phagocytosis for filomicelle macrophage entry, but only SR-BI is needed for entry into Idla7-SR-BI cells. PEO-PBD spheres did not interact strongly with SR-BI in the above experiments. The results show elongated PEO-based NPs can bind cells via cooperativity among SR-BI receptors on cell surfaces.


Assuntos
COVID-19 , Nanopartículas , Animais , Antígenos CD36 , Humanos , Lipoproteínas HDL/metabolismo , Camundongos , Receptores Imunológicos , SARS-CoV-2 , Receptores Depuradores Classe B/genética
5.
PLoS Pathog ; 17(8): e1009839, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432857

RESUMO

Masking the immunogenic cell wall epitope ß(1,3)-glucan under an outer layer of mannosylated glycoproteins is an important virulence factor deployed by Candida albicans during infection. Consequently, increased ß(1,3)-glucan exposure (unmasking) reveals C. albicans to the host's immune system and attenuates its virulence. We have previously shown that activation of the Cek1 MAPK pathway via expression of a hyperactive allele of an upstream kinase (STE11ΔN467) induced unmasking. It also increased survival of mice in a murine disseminated candidiasis model and attenuated kidney fungal burden by ≥33 fold. In this communication, we utilized cyclophosphamide-induced immunosuppression to test if the clearance of the unmasked STE11ΔN467 mutant was dependent on the host immune system. Suppression of the immune response by cyclophosphamide reduced the attenuation in fungal burden caused by the STE11ΔN467 allele. Moreover, specific depletion of neutrophils via 1A8 antibody treatment also reduced STE11ΔN467-dependent fungal burden attenuation, but to a lesser extent than cyclophosphamide, demonstrating an important role for neutrophils in mediating fungal clearance of unmasked STE11ΔN467 cells. In an effort to understand the mechanism by which Ste11ΔN467 causes unmasking, transcriptomics were used to reveal that several components in the Cek1 MAPK pathway were upregulated, including the transcription factor CPH1 and the cell wall sensor DFI1. In this report we show that a cph1ΔΔ mutation restored ß(1,3)-glucan exposure to wild-type levels in the STE11ΔN467 strain, confirming that Cph1 is the transcription factor mediating Ste11ΔN467-induced unmasking. Furthermore, Cph1 is shown to induce a positive feedback loop that increases Cek1 activation. In addition, full unmasking by STE11ΔN467 is dependent on the upstream cell wall sensor DFI1. However, while deletion of DFI1 significantly reduced Ste11ΔN467-induced unmasking, it did not impact activation of the downstream kinase Cek1. Thus, it appears that once stimulated by Ste11ΔN467, Dfi1 activates a parallel signaling pathway that is involved in Ste11ΔN467-induced unmasking.


Assuntos
Candida albicans/imunologia , Candidíase/prevenção & controle , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Neutrófilos/imunologia , Fatores de Transcrição/metabolismo , Virulência , beta-Glucanas/imunologia , Animais , Candidíase/imunologia , Candidíase/microbiologia , Parede Celular , Proteínas Fúngicas/genética , Camundongos , Camundongos Endogâmicos ICR , Neutrófilos/microbiologia , Fatores de Transcrição/genética
6.
J Am Acad Psychiatry Law ; 48(3): 365-375, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32404363

RESUMO

Women of reproductive age may experience pregnancy and mothering in a correctional environment designed for men. Rates of incarceration for women in the United States are high by international standards, and they continue to rise. Mothers were often single mothers prior to incarceration, and they are often separated from their children for the first time upon entering prison. Pregnancy, delivery, lactation, and parenting each require special consideration. Outcomes of pregnancy in prison are better overall than for similarly disadvantaged women in the community. Breastfeeding, despite being recommended by medical groups, is problematic for most who are awaiting forced separation from their infant, due to a lack of mother-baby units in most U.S. states. Mother-baby units have crucial goals, including improved family relations and decreased recidivism. They should not discriminate against mothers with treated perinatal mental illness. Many barriers for visitation of incarcerated mothers exist, including that, because there are fewer women's prisons, there are greater distances between mothers and children. This article reviews data about pregnancy and motherhood in corrections, and it discusses the international state of mother-baby units, with implications for U.S. corrections.


Assuntos
Estabelecimentos Correcionais , Gestantes , Aleitamento Materno , Feminino , Humanos , Relações Mãe-Filho , Poder Familiar , Parto , Assistência Perinatal/normas , Gravidez , Resultado da Gravidez , Cuidado Pré-Natal/normas , Restrição Física/legislação & jurisprudência
7.
mBio ; 10(5)2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530671

RESUMO

Candida albicans is among the most prevalent opportunistic human fungal pathogens. The ability to mask the immunogenic polysaccharide ß (1,3)-glucan from immune detection via a layer of mannosylated proteins is a key virulence factor of C. albicans We previously reported that hyperactivation of the Cek1 mitogen-activated protein (MAP) kinase pathway promotes ß (1,3)-glucan exposure. In this communication, we report a novel upstream regulator of Cek1 activation and characterize the impact of Cek1 activity on fungal virulence. Lrg1 encodes a GTPase-activating protein (GAP) that has been suggested to inhibit the GTPase Rho1. We found that disruption of LRG1 causes Cek1 hyperactivation and ß (1,3)-glucan unmasking. However, when GTPase activation was measured for a panel of GTPases, the lrg1ΔΔ mutant exhibited increased activation of Cdc42 and Ras1 but not Rho1 or Rac1. Unmasking and Cek1 activation in the lrg1ΔΔ mutant can be blocked by inhibition of the Ste11 MAP kinase kinase kinase (MAPKKK), indicating that the lrg1ΔΔ mutant acts through the canonical Cek1 MAP kinase cascade. In order to determine how Cek1 hyperactivation specifically impacts virulence, a doxycycline-repressible hyperactive STE11ΔN467 allele was expressed in C. albicans In the absence of doxycycline, this allele overexpressed STE11ΔN467 , which induced production of proinflammatory tumor necrosis factor alpha (TNF-α) from murine macrophages. This in vitro phenotype correlates with decreased colonization and virulence in a mouse model of systemic infection. The mechanism by which Ste11ΔN467 causes unmasking was explored with RNA sequencing (RNA-Seq) analysis. Overexpression of Ste11ΔN467 caused upregulation of the Cph1 transcription factor and of a group of cell wall-modifying proteins which are predicted to impact cell wall architecture.IMPORTANCECandida albicans is an important source of systemic infections in humans. The ability to mask the immunogenic cell wall polymer ß (1,3)-glucan from host immune surveillance contributes to fungal virulence. We previously reported that the hyperactivation of the Cek1 MAP kinase cascade promotes cell wall unmasking, thus increasing strain immunogenicity. In this study, we identified a novel regulator of the Cek1 pathway called Lrg1. Lrg1 is a predicted GTPase-activating protein (GAP) that represses Cek1 activity by downregulating the GTPase Cdc42 and its downstream MAPKKK, Ste11. Upregulation of Cek1 activity diminished fungal virulence in the mouse model of infection, and this correlates with increased cytokine responses from macrophages. We also analyzed the transcriptional profile determined during ß (1,3)-glucan exposure driven by Cek1 hyperactivation. Our report provides a model where Cek1 hyperactivation causes ß (1,3)-glucan exposure by upregulation of cell wall proteins and leads to more robust immune detection in vivo, promoting more effective clearance.


Assuntos
Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Candida albicans/enzimologia , Candida albicans/genética , Proteínas Fúngicas/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteína Quinase 3 Ativada por Mitógeno/genética , Virulência
8.
J Mol Recognit ; 31(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28994207

RESUMO

We are developing a rapid, time-resolved method using laser-activated cross-linking to capture protein-peptide interactions as a means to interrogate the interaction of serum proteins as delivery systems for peptides and other molecules. A model system was established to investigate the interactions between bovine serum albumin (BSA) and 2 peptides, the tridecapeptide budding-yeast mating pheromone (α-factor) and the decapeptide human gonadotropin-releasing hormone (GnRH). Cross-linking of α-factor, using a biotinylated, photoactivatable p-benzoyl-L-phenylalanine (Bpa)-modified analog, was energy-dependent and achieved within seconds of laser irradiation. Protein blotting with an avidin probe was used to detect biotinylated species in the BSA-peptide complex. The cross-linked complex was trypsinized and then interrogated with nano-LC-MS/MS to identify the peptide cross-links. Cross-linking was greatly facilitated by Bpa in the peptide, but some cross-linking occurred at higher laser powers and high concentrations of a non-Bpa-modified α-factor. This was supported by experiments using GnRH, a peptide with sequence homology to α-factor, which was likewise found to be cross-linked to BSA by laser irradiation. Analysis of peptides in the mass spectra showed that the binding site for both α-factor and GnRH was in the BSA pocket defined previously as the site for fatty acid binding. This model system validates the use of laser-activation to facilitate cross-linking of Bpa-containing molecules to proteins. The rapid cross-linking procedure and high performance of MS/MS to identify cross-links provides a method to interrogate protein-peptide interactions in a living cell in a time-resolved manner.


Assuntos
Espectrometria de Massas/métodos , Hormônios Peptídicos/química , Peptídeos/química , Feromônios/química , Soroalbumina Bovina/química , Animais , Sítios de Ligação , Bovinos , Humanos , Ligação Proteica , Espectrometria de Massas em Tandem
9.
PLoS One ; 10(1): e0116974, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25602740

RESUMO

ScOpi1p is a well-characterized transcriptional repressor and master regulator of inositol and phospholipid biosynthetic genes in the baker's yeast Saccharomyces cerevisiae. An ortholog has been shown to perform a similar function in the pathogenic fungus Candida glabrata, but with the distinction that CgOpi1p is essential for growth in this organism. However, in the more distantly related yeast Yarrowia lipolytica, the OPI1 homolog was not found to regulate inositol biosynthesis, but alkane oxidation. In Candida albicans, the most common cause of human candidiasis, its Opi1p homolog, CaOpi1p, has been shown to complement a S. cerevisiae opi1∆ mutant for inositol biosynthesis regulation when heterologously expressed, suggesting it might serve a similar role in this pathogen. This was tested in the pathogen directly in this report by disrupting the OPI1 homolog and examining its phenotypes. It was discovered that the OPI1 homolog does not regulate INO1 expression in C. albicans, but it does control SAP2 expression in response to bovine serum albumin containing media. Meanwhile, we found that CaOpi1 represses filamentous growth at lower temperatures (30 °C) on agar, but not in liquid media. Although, the mutant does not affect virulence in a mouse model of systemic infection, it does affect virulence in a rat model of vaginitis. This may be because Opi1p regulates expression of the SAP2 protease, which is required for rat vaginal infections.


Assuntos
Candida albicans/metabolismo , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Candida albicans/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Inositol/metabolismo , Camundongos , Virulência , Yarrowia/crescimento & desenvolvimento , Yarrowia/metabolismo , Yarrowia/patogenicidade
10.
PLoS Pathog ; 10(10): e1004407, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25275454

RESUMO

Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7-/- mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope.


Assuntos
Candida albicans/metabolismo , Proteínas de Transporte/metabolismo , Heme/metabolismo , Hemeproteínas/metabolismo , Hemoglobinas/metabolismo , Ferro/metabolismo , Animais , Candida albicans/patogenicidade , Parede Celular/metabolismo , Espaço Extracelular/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Proteínas Ligantes de Grupo Heme , Humanos , Camundongos , Virulência/imunologia
11.
Biopolymers ; 102(1): 16-29, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23897574

RESUMO

Structural analysis by NMR of G protein-coupled receptors (GPCRs) has proven to be extremely challenging. To reduce the number of peaks in the NMR spectra by segmentally labeling a GPCR, we have developed a Guided Reconstitution method that includes the use of charged residues and Cys activation to drive heterodimeric disulfide bond formation. Three different cysteine-activating reagents: 5-5'-dithiobis(2-nitrobenzoic acid) [DTNB], 2,2'-dithiobis(5-nitropyridine) [DTNP], and 4,4'-dipyridyl disulfide [4-PDS] were analyzed to determine their efficiency in heterodimer formation at different pHs. Short peptides representing the N-terminal (NT) and C-terminal (CT) regions of the first extracellular loop (EL1) of Ste2p, the Saccharomyces cerevisiae alpha-factor mating receptor, were activated using these reagents and the efficiencies of activation and rates of heterodimerization were analyzed. Activation of NT peptides with DTNP and 4-PDS resulted in about 60% yield, but heterodimerization was rapid and nearly quantitative. Double transmembrane domain protein fragments were biosynthesized and used in Guided Reconstitution reactions. A 102-residue fragment, 2TM-tail [Ste2p(G31-I120C)], was heterodimerized with CT-EL1-tail(DTNP) at pH 4.6 with a yield of ∼75%. A 132-residue fragment, 2TMlong-tail [Ste2p(M1-I120C)], was expressed in both unlabeled and (15)N-labeled forms and used with a peptide comprising the third transmembrane domain, to generate a 180-residue segmentally labeled 3TM protein that was found to be segmentally labeled using [(15)N,(1)H]-HSQC analysis. Our data indicate that the Guided Reconstitution method would be applicable to the segmental labeling of a membrane protein with 3 transmembrane domains and may prove useful in the preparation of an intact reconstituted GPCR for use in biophysical analysis and structure determination.


Assuntos
Bioquímica/métodos , Proteínas de Membrana/química , Sequência de Aminoácidos , Brometo de Cianogênio/química , Cisteína/química , Dissulfetos/metabolismo , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/isolamento & purificação , Dados de Sequência Molecular , Mutação/genética , Peptídeos/química , Multimerização Proteica , Receptores de Fator de Acasalamento/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Tempo
12.
Proc Natl Acad Sci U S A ; 107(51): 22044-9, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21135205

RESUMO

One potentially rich source of possible targets for antifungal therapy are those Candida albicans genes deemed essential for growth under the standard culture (i.e., in vitro) conditions; however, these genes are largely unexplored as drug targets because essential genes are not experimentally amenable to conventional gene deletion and virulence studies. Using tetracycline-regulatable promoter-based conditional mutants, we investigated a murine model of candidiasis in which repressing essential genes in the host was achieved. By adding doxycycline to the drinking water starting 3 days prior to (dox - 3D) or 2 days post (dox + 2D) infection, the phenotypic consequences of temporal gene inactivation were assessed by monitoring animal survival and fungal burden in prophylaxis and acute infection settings. Of 177 selected conditional shut-off strains tested, the virulence of 102 was blocked under both repressing conditions, suggesting that the corresponding genes are essential for growth and survival in a murine host across early and established infection periods. Among these genes were those previously identified as antifungal drug targets (i.e., FKS1, ERG1, and ERG11), verifying that this methodology can be used to validate potential new targets. We also identify genes either conditionally essential or dispensable for in vitro growth but required for survival and virulence, including those in late stage ergosterol synthesis, or early steps in fatty acid or riboflavin biosynthesis. This study evaluates the role of essential genes with respect to pathogen virulence in a large-scale, systems biology context, and provides a general method for gene target validation and for uncovering unexpected antimicrobial targets.


Assuntos
Candida albicans/metabolismo , Candida albicans/patogenicidade , Candidíase/metabolismo , Proteínas Fúngicas/biossíntese , Viabilidade Microbiana , Fatores de Virulência/biossíntese , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Candida albicans/genética , Candidíase/tratamento farmacológico , Candidíase/genética , Modelos Animais de Doenças , Doxiciclina/farmacologia , Desenho de Fármacos , Ergosterol/biossíntese , Ergosterol/genética , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/fisiologia , Genes Fúngicos/fisiologia , Camundongos , Riboflavina/biossíntese , Riboflavina/genética , Fatores de Virulência/genética
13.
Mol Microbiol ; 75(5): 1112-32, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20132453

RESUMO

Phospholipid biosynthetic pathways play crucial roles in the virulence of several pathogens; however, little is known about how phospholipid synthesis affects pathogenesis in fungi such as Candida albicans. A C. albicans phosphatidylserine (PS) synthase mutant, cho1 Delta/Delta, lacks PS, has decreased phosphatidylethanolamine (PE), and is avirulent in a mouse model of systemic candidiasis. The cho1 Delta/Delta mutant exhibits defects in cell wall integrity, mitochondrial function, filamentous growth, and is auxotrophic for ethanolamine. PS is a precursor for de novo PE biosynthesis. A psd1 Delta/Delta psd2 Delta/Delta double mutant, which lacks the PS decarboxylase enzymes that convert PS to PE in the de novo pathway, has diminished PE levels like those of the cho1 Delta/Delta mutant. The psd1 Delta/Delta psd2 Delta/Delta mutant exhibits phenotypes similar to those of the cho1 Delta/Delta mutant; however, it is slightly more virulent and has less of a cell wall defect. The virulence losses exhibited by the cho1 Delta/Delta and psd1 Delta/Delta psd2 Delta/Delta mutants appear to be related to their cell wall defects which are due to loss of de novo PE biosynthesis, but are exacerbated by loss of PS itself. Cho1p is conserved in fungi, but not mammals, so fungal PS synthase is a potential novel antifungal drug target.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Candida albicans/fisiologia , Carboxiliases/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Animais , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida albicans/patogenicidade , Candidíase/microbiologia , Candidíase/patologia , Carboxiliases/genética , Deleção de Genes , Histocitoquímica , Imuno-Histoquímica , Rim/microbiologia , Rim/patologia , Camundongos , Microscopia , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Análise de Sobrevida , Virulência
14.
Microbiology (Reading) ; 155(Pt 12): 3847-3859, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19778960

RESUMO

The early endocytic patch protein Sla2 is important for morphogenesis and growth rates in Saccharomyces cerevisiae and Candida albicans, but the mechanism that connects these processes is not clear. Here we report that growth defects in cells lacking CaSLA2 or ScSLA2 are associated with a cell cycle delay that is influenced by Swe1, a morphogenesis checkpoint kinase. To establish how Swe1 monitors Sla2 function, we compared actin organization and cell cycle dynamics in strains lacking other components of early endocytic patches (Sla1 and Abp1) with those in strains lacking Sla2. Only sla2 strains had defects in actin cables, a known trigger of the morphogenesis checkpoint, yet all three strains exhibited Swe1-dependent phenotypes. Thus, Swe1 appears to monitor actin patch in addition to actin cable function. Furthermore, Swe1 contributed to virulence in a mouse model of disseminated candidiasis, implying a role for the morphogenesis checkpoint during the pathogenesis of C. albicans infections.


Assuntos
Candida albicans/citologia , Candida albicans/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Mutação , Proteínas Tirosina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Actinas/metabolismo , Animais , Sequência de Bases , Candida albicans/patogenicidade , Candida albicans/fisiologia , Candidíase/etiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas do Citoesqueleto/fisiologia , Primers do DNA/genética , DNA Fúngico/genética , Modelos Animais de Doenças , Endocitose , Proteínas Fúngicas/fisiologia , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfogênese/genética , Plasmídeos/genética , Proteínas Tirosina Quinases/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Virulência/genética , Virulência/fisiologia
15.
J Biol Chem ; 284(29): 19754-64, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19487691

RESUMO

The balance between saturated and unsaturated fatty acids plays a crucial role in determining the membrane fluidity. In the diploid fungal pathogen Candida albicans, the gene for fatty acid Delta9 desaturase, OLE1, is essential for viability. Using a reverse genetic approach, termed the fitness test, we identified a group of structurally related synthetic compounds that induce specific hypersensitivity of the OLE1(+/-) strain. Genetic repression of OLE1 and chemical inhibition by two selected compounds, ECC145 and ECC188, resulted in a marked decrease in the total unsaturated fatty acids and impaired hyphal development. The resulting auxotroph of both was suppressed by the exogenous monounsaturated fatty acids (16:1Delta9 and 18:1Delta9). These correlations suggest that both compounds affect the level of unsaturated fatty acids, likely by impairing Ole1p directly or indirectly. However, the residual levels of monounsaturated fatty acids (MUFAs) resulted from chemical inhibition were significantly higher than OLE1 repression, indicating even partial inhibition of MUFAs is sufficient to stop cellular proliferation. Although the essentiality of OLE1 was suppressed by MUFAs in vitro, we demonstrated that it was required for virulence in a murine model of systemic candidiasis even when the animals were supplemented with a high fat diet. Thus, the fungal fatty acid desaturase is an attractive antifungal drug target. Taking advantage of the inhibitors and the relevant conditional shut-off strains, we validated several chemical genetic interactions observed in the fitness test profiles that reveal novel genetic interactions between OLE1/unsaturated fatty acids and other cellular processes.


Assuntos
Antifúngicos/farmacologia , Candida albicans/genética , Ácidos Graxos Insaturados/biossíntese , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Animais , Antifúngicos/química , Candida albicans/metabolismo , Candida albicans/patogenicidade , Candidíase/microbiologia , Candidíase/mortalidade , Cerulenina/farmacologia , Análise por Conglomerados , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estrutura Molecular , Mutação , Estearoil-CoA Dessaturase , Taxa de Sobrevida , Tiazóis/química , Tiazóis/farmacologia , Fatores de Tempo , Triazóis/química , Triazóis/farmacologia , Virulência/genética
16.
PLoS One ; 4(6): e5989, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19543525

RESUMO

BACKGROUND: Selective attention and memory seem to be related in human experience. This appears to be the case as well in simple model organisms such as the fly Drosophila melanogaster. Mutations affecting olfactory and visual memory formation in Drosophila, such as in dunce and rutabaga, also affect short-term visual processes relevant to selective attention. In particular, increased optomotor responsiveness appears to be predictive of visual attention defects in these mutants. METHODOLOGY/PRINCIPAL FINDINGS: To further explore the possible overlap between memory and visual attention systems in the fly brain, we screened a panel of 36 olfactory long term memory (LTM) mutants for visual attention-like defects using an optomotor maze paradigm. Three of these mutants yielded high dunce-like optomotor responsiveness. We characterized these three strains by examining their visual distraction in the maze, their visual learning capabilities, and their brain activity responses to visual novelty. We found that one of these mutants, D0067, was almost completely identical to dunce(1) for all measures, while another, D0264, was more like wild type. Exploiting the fact that the LTM mutants are also Gal4 enhancer traps, we explored the sufficiency for the cells subserved by these elements to rescue dunce attention defects and found overlap at the level of the mushroom bodies. Finally, we demonstrate that control of synaptic function in these Gal4 expressing cells specifically modulates a 20-30 Hz local field potential associated with attention-like effects in the fly brain. CONCLUSIONS/SIGNIFICANCE: Our study uncovers genetic and neuroanatomical systems in the fly brain affecting both visual attention and odor memory phenotypes. A common component to these systems appears to be the mushroom bodies, brain structures which have been traditionally associated with odor learning but which we propose might be also involved in generating oscillatory brain activity required for attention-like processes in the fly brain.


Assuntos
Encéfalo/fisiologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Memória , Mutação , Visão Ocular , Animais , Mapeamento Encefálico , Proteínas de Drosophila/genética , Eletrofisiologia/métodos , Aprendizagem em Labirinto , Modelos Genéticos , Neurônios/metabolismo , Oscilometria , Fenótipo
17.
Chem Biol ; 15(4): 363-74, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18420143

RESUMO

Natural products provide an unparalleled source of chemical scaffolds with diverse biological activities and have profoundly impacted antimicrobial drug discovery. To further explore the full potential of their chemical diversity, we survey natural products for antifungal, target-specific inhibitors by using a chemical-genetic approach adapted to the human fungal pathogen Candida albicans and demonstrate that natural-product fermentation extracts can be mechanistically annotated according to heterozygote strain responses. Applying this approach, we report the discovery and characterization of a natural product, parnafungin, which we demonstrate, by both biochemical and genetic means, to inhibit poly(A) polymerase. Parnafungin displays potent and broad spectrum activity against diverse, clinically relevant fungal pathogens and reduces fungal burden in a murine model of disseminated candidiasis. Thus, mechanism-of-action determination of crude fermentation extracts by chemical-genetic profiling brings a powerful strategy to natural-product-based drug discovery.


Assuntos
Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Polinucleotídeo Adenililtransferase/antagonistas & inibidores , Alelos , Sequência de Aminoácidos , Animais , Antifúngicos/química , Antifúngicos/isolamento & purificação , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/metabolismo , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Candida albicans/metabolismo , Candidíase/tratamento farmacológico , Candidíase/metabolismo , Misturas Complexas/farmacologia , Desoxiadenosinas/metabolismo , Desoxiadenosinas/farmacologia , Farmacorresistência Fúngica , Fermentação , Heterozigoto , Camundongos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutação , Poliadenilação/efeitos dos fármacos , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Resultado do Tratamento
18.
Infect Immun ; 76(6): 2793-801, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18268031

RESUMO

Candida albicans is an important cause of life-threatening systemic bloodstream infections in immunocompromised patients. In order to cause infections, C. albicans must be able to synthesize the essential metabolite inositol or acquire it from the host. Based on the similarity of C. albicans to Saccharomyces cerevisiae, it was predicted that C. albicans may generate inositol de novo, import it from the environment, or both. The C. albicans inositol synthesis gene INO1 (orf19.7585) and inositol transporter gene ITR1 (orf19.3526) were each disrupted. The ino1Delta/ino1Delta mutant was an inositol auxotroph, and the itr1Delta/itr1Delta mutant was unable to import inositol from the medium. Each of these mutants was fully virulent in a mouse model of systemic infection. It was not possible to generate an ino1Delta/ino1Delta itr1Delta/itr1Delta double mutant, suggesting that in the absence of these two genes, C. albicans could not acquire inositol and was nonviable. A conditional double mutant was created by replacing the remaining wild-type allele of ITR1 in an ino1Delta/ino1Delta itr1Delta/ITR1 strain with a conditionally expressed allele of ITR1 driven by the repressible MET3 promoter. The resulting ino1Delta/ino1Delta itr1Delta/P(MET3)::ITR1 strain was found to be nonviable in medium containing methionine and cysteine (which represses the P(MET3) promoter), and it was avirulent in the mouse model of systemic candidiasis. These results suggest a model in which C. albicans has two equally effective mechanisms for obtaining inositol while in the host. It can either generate inositol de novo through Ino1p, or it can import it from the host through Itr1p.


Assuntos
Candida albicans/metabolismo , Candidíase/microbiologia , Inositol/metabolismo , Animais , Candida albicans/genética , Candida albicans/patogenicidade , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Inositol/genética , Masculino , Camundongos , Mutação , Virulência
19.
Chem Biol ; 14(10): 1163-75, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17961828

RESUMO

Mechanism-of-action (MOA) studies of bioactive compounds are fundamental to drug discovery. However, in vitro studies alone may not recapitulate a compound's MOA in whole cells. Here, we apply a chemogenomics approach in Candida albicans to evaluate compounds affecting purine metabolism. They include the IMP dehydrogenase inhibitors mycophenolic acid and mizoribine and the previously reported GMP synthase inhibitors acivicin and 6-diazo-5-oxo-L-norleucine (DON). We report important aspects of their whole-cell activity, including their primary target, off-target activity, and drug metabolism. Further, we describe ECC1385, an inhibitor of GMP synthase, and provide biochemical and genetic evidence supporting its MOA to be distinct from acivicin or DON. Importantly, GMP synthase activity is conditionally essential in C. albicans and Aspergillus fumigatus and is required for virulence of both pathogens, thus constituting an unexpected antifungal target.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Aspergillus fumigatus/enzimologia , Candida albicans/enzimologia , Diazo-Oxo-Norleucina/farmacologia , Farmacorresistência Fúngica , Eletroforese em Gel de Poliacrilamida , IMP Desidrogenase/antagonistas & inibidores , Isoxazóis/farmacologia , Testes de Sensibilidade Microbiana , Ácido Micofenólico/farmacologia , Purinas/metabolismo , Ribonucleosídeos/farmacologia
20.
PLoS Pathog ; 3(3): e24, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17352532

RESUMO

Aspergillus fumigatus is the most prevalent airborne filamentous fungal pathogen in humans, causing severe and often fatal invasive infections in immunocompromised patients. Currently available antifungal drugs to treat invasive aspergillosis have limited modes of action, and few are safe and effective. To identify and prioritize antifungal drug targets, we have developed a conditional promoter replacement (CPR) strategy using the nitrogen-regulated A. fumigatus NiiA promoter (pNiiA). The gene essentiality for 35 A. fumigatus genes was directly demonstrated by this pNiiA-CPR strategy from a set of 54 genes representing broad biological functions whose orthologs are confirmed to be essential for growth in Candida albicans and Saccharomyces cerevisiae. Extending this approach, we show that the ERG11 gene family (ERG11A and ERG11B) is essential in A. fumigatus despite neither member being essential individually. In addition, we demonstrate the pNiiA-CPR strategy is suitable for in vivo phenotypic analyses, as a number of conditional mutants, including an ERG11 double mutant (erg11BDelta, pNiiA-ERG11A), failed to establish a terminal infection in an immunocompromised mouse model of systemic aspergillosis. Collectively, the pNiiA-CPR strategy enables a rapid and reliable means to directly identify, phenotypically characterize, and facilitate target-based whole cell assays to screen A. fumigatus essential genes for cognate antifungal inhibitors.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/genética , Regulação Fúngica da Expressão Gênica , Genes Essenciais , Genes Fúngicos , Regiões Promotoras Genéticas , Animais , Antifúngicos/uso terapêutico , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/patogenicidade , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Masculino , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Nitrato Redutases/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Fenótipo , RNA Mensageiro/análise , Recombinação Genética , Esterol 14-Desmetilase , Transcrição Gênica , Virulência/genética , Virulência/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...