Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(5): 2039-2048, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36806762

RESUMO

Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan's unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256 patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic metabolites in the medial frontal cortex (MFC, glutamate: CVR = 0.15, p < 0.001; glutamine: CVR = 0.15, p = 0.003; Glx: CVR = 0.11, p = 0.002), dorsolateral prefrontal cortex (glutamine: CVR = 0.14, p = 0.05; Glx: CVR = 0.25, p < 0.001) and thalamus (glutamate: CVR = 0.16, p = 0.008; Glx: CVR = 0.19, p = 0.008). Studies in younger, more symptomatic patients were associated with greater variability in the basal ganglia (BG glutamate with age: z = -0.03, p = 0.003, symptoms: z = 0.007, p = 0.02) and temporal lobe (glutamate with age: z = -0.03, p = 0.02), while studies with older, more symptomatic patients associated with greater variability in MFC (glutamate with age: z = 0.01, p = 0.02, glutamine with symptoms: z = 0.01, p = 0.02). For individual patient data, most studies showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate (g = -0.15, p = 0.03), higher thalamic glutamine (g = 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g = 0.28, p < 0.001). Proportion of males was negatively associated with MFC glutamate (z = -0.02, p < 0.001) and frontal white matter Glx (z = -0.03, p = 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG (z = 0.01, p = 0.01) and temporal lobe (z = 0.05, p = 0.008). Further research into the mechanisms underlying greater glutamatergic metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future treatment strategies.


Assuntos
Ácido Glutâmico , Esquizofrenia , Masculino , Humanos , Ácido Glutâmico/metabolismo , Esquizofrenia/metabolismo , Glutamina/metabolismo , Encéfalo/metabolismo , Espectroscopia de Prótons por Ressonância Magnética
2.
JAMA Psychiatry ; 78(6): 667-681, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881460

RESUMO

Importance: Proton magnetic resonance spectroscopy (1H-MRS) studies indicate that altered brain glutamatergic function may be associated with the pathophysiology of schizophrenia and the response to antipsychotic treatment. However, the association of altered glutamatergic function with clinical and demographic factors is unclear. Objective: To assess the associations of age, symptom severity, level of functioning, and antipsychotic treatment with brain glutamatergic metabolites. Data Sources: The MEDLINE database was searched to identify journal articles published between January 1, 1980, and June 3, 2020, using the following search terms: MRS or magnetic resonance spectroscopy and (1) schizophrenia or (2) psychosis or (3) UHR or (4) ARMS or (5) ultra-high risk or (6) clinical high risk or (7) genetic high risk or (8) prodrome* or (9) schizoaffective. Authors of 114 1H-MRS studies measuring glutamate (Glu) levels in patients with schizophrenia were contacted between January 2014 and June 2020 and asked to provide individual participant data. Study Selection: In total, 45 1H-MRS studies contributed data. Data Extraction and Synthesis: Associations of Glu, Glu plus glutamine (Glx), or total creatine plus phosphocreatine levels with age, antipsychotic medication dose, symptom severity, and functioning were assessed using linear mixed models, with study as a random factor. Main Outcomes and Measures: Glu, Glx, and Cr values in the medial frontal cortex (MFC) and medial temporal lobe (MTL). Results: In total, 42 studies were included, with data for 1251 patients with schizophrenia (mean [SD] age, 30.3 [10.4] years) and 1197 healthy volunteers (mean [SD] age, 27.5 [8.8] years). The MFC Glu (F1,1211.9 = 4.311, P = .04) and Glx (F1,1079.2 = 5.287, P = .02) levels were lower in patients than in healthy volunteers, and although creatine levels appeared lower in patients, the difference was not significant (F1,1395.9 = 3.622, P = .06). In both patients and volunteers, the MFC Glu level was negatively associated with age (Glu to Cr ratio, F1,1522.4 = 47.533, P < .001; cerebrospinal fluid-corrected Glu, F1,1216.7 = 5.610, P = .02), showing a 0.2-unit reduction per decade. In patients, antipsychotic dose (in chlorpromazine equivalents) was negatively associated with MFC Glu (estimate, 0.10 reduction per 100 mg; SE, 0.03) and MFC Glx (estimate, -0.11; SE, 0.04) levels. The MFC Glu to Cr ratio was positively associated with total symptom severity (estimate, 0.01 per 10 points; SE, 0.005) and positive symptom severity (estimate, 0.04; SE, 0.02) and was negatively associated with level of global functioning (estimate, 0.04; SE, 0.01). In the MTL, the Glx to Cr ratio was positively associated with total symptom severity (estimate, 0.06; SE, 0.03), negative symptoms (estimate, 0.2; SE, 0.07), and worse Clinical Global Impression score (estimate, 0.2 per point; SE, 0.06). The MFC creatine level increased with age (estimate, 0.2; SE, 0.05) but was not associated with either symptom severity or antipsychotic medication dose. Conclusions and Relevance: Findings from this mega-analysis suggest that lower brain Glu levels in patients with schizophrenia may be associated with antipsychotic medication exposure rather than with greater age-related decline. Higher brain Glu levels may act as a biomarker of illness severity in schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Adulto , Fatores Etários , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Feminino , Ácido Glutâmico/efeitos dos fármacos , Glutamina/efeitos dos fármacos , Glutamina/metabolismo , Humanos , Masculino , Gravidade do Paciente , Espectroscopia de Prótons por Ressonância Magnética , Adulto Jovem
3.
Proc Natl Acad Sci U S A ; 101(42): 15148-53, 2004 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-15471992

RESUMO

A major challenge in human genetics is identifying the molecular basis of common heritable disorders. In contrast to rare single-gene diseases, multifactorial disorders are thought to arise from the combined effect of multiple gene variants, such that any single variant may have only a modest effect on disease susceptibility. We present a method to identify genes that may harbor a significant proportion of the genetic variation that predisposes individuals to a given multifactorial disorder. First, we perform an automated literature analysis that predicts physical interactions (edges) among candidate disease genes (seed nodes, selected on the basis of prior information) and other molecular entities. We derive models of molecular networks from this analysis and map the seed nodes to them. We then compute the graph-theoretic distance (the minimum number of edges that must be traversed) between the seed nodes and all other nodes in the network. We assume that nodes that are found in close proximity to multiple seed nodes are the best disease-related candidate genes. To evaluate this approach, we selected four seed genes, each with a proven role in Alzheimer's disease (AD). The method performed well in predicting additional network nodes that match AD gene candidates identified manually by an expert. We also show that the method prioritizes among the seed nodes themselves, rejecting false-positive seeds that are derived from (noisy) whole-genome genetic-linkage scans. We propose that this strategy will provide a valuable means to bridge genetic and genomic knowledge in the search for genetic determinants of multifactorial disorders.


Assuntos
Doença de Alzheimer/genética , Ligação Genética , Modelos Genéticos , Algoritmos , Sistemas Inteligentes , Variação Genética , Genoma Humano , Humanos
4.
Am J Hum Genet ; 73(1): 34-48, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12802786

RESUMO

Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R(avg)) and then weighted for sample size (N(sqrt)[affected casess]). A permutation test was used to compute the probability of observing, by chance, each bin's average rank (P(AvgRnk)) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P(ord)). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (PAvgRnk<.000417). Two aggregate criteria for linkage were also met (clusters of nominally significant P values that did not occur in 1,000 replicates of the entire data set with no linkage present): 12 consecutive bins with both P(AvgRnk) and P(ord)<.05, including regions of chromosomes 5q, 3p, 11q, 6p, 1q, 22q, 8p, 20q, and 14p, and 19 consecutive bins with P(ord)<.05, additionally including regions of chromosomes 16q, 18q, 10p, 15q, 6q, and 17q. There is greater consistency of linkage results across studies than has been previously recognized. The results suggest that some or all of these regions contain loci that increase susceptibility to schizophrenia in diverse populations.


Assuntos
Transtorno Bipolar/genética , Genoma Humano , Esquizofrenia/genética , Genótipo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...