Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 119(3): 705-716, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32697975

RESUMO

The function of photoreceptors relies on efficient transfer of absorbed light energy from the chromophore to the protein to drive conformational changes that ultimately generate an output signal. In retinal-binding proteins, mainly two mechanisms exist to store the photon energy after photoisomerization: 1) conformational distortion of the prosthetic group retinal, and 2) charge separation between the protonated retinal Schiff base (RSBH+) and its counterion complex. Accordingly, energy transfer to the protein is achieved by chromophore relaxation and/or reduction of the charge separation in the RSBH+-counterion complex. Combining FTIR and UV-Vis spectroscopy along with molecular dynamics simulations, we show here for the widely used, red-activatable Volvox carteri channelrhodopsin-1 derivate ReaChR that energy storage and transfer into the protein depends on the protonation state of glutamic acid E163 (Ci1), one of the counterions of the RSBH+. Ci1 retains a pKa of 7.6 so that both its protonated and deprotonated forms equilibrate at physiological conditions. Protonation of Ci1 leads to a rigid hydrogen-bonding network in the active-site region. This stabilizes the distorted conformation of the retinal after photoactivation and decelerates energy transfer into the protein by impairing the release of the strain energy. In contrast, with deprotonated Ci1 or removal of the Ci1 glutamate side chain, the hydrogen-bonded system is less rigid, and energy transfer by chromophore relaxation is accelerated. Based on the hydrogen out-of-plane (HOOP) band decay kinetics, we determined the activation energy for these processes in dependence of the Ci1 protonation state.


Assuntos
Simulação de Dinâmica Molecular , Bases de Schiff , Channelrhodopsins , Transferência de Energia , Ligação de Hidrogênio
2.
Biochemistry ; 58(9): 1275-1286, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30702875

RESUMO

In recent years, gating and transient ion-pathway formation in the light-gated channelrhodopsins (ChRs) have been intensively studied. Despite these efforts, a profound understanding of the mechanistic details is still lacking. To track structural changes concomitant with the formation and subsequent collapse of the ion-conducting pore, we site-specifically introduced the artificial polarity-sensing probe p-azido-l-phenylalanine (azF) into several ChRs by amber stop codon suppression. The frequently used optogenetic actuator ReaChR (red-activatable ChR) exhibited the best expression properties of the wild type and the azF mutants. By exploiting the unique infrared spectral absorption of azF [νas(N3) ∼ 2100 cm-1] and its sensitivity to polarity changes, we monitored hydration changes at various sites of the pore region and the inner gate by stationary and time-resolved infrared spectroscopy. Our data imply that channel closure coincides with a dehydration event occurring between the interface of the central and the inner gate. In contrast, the extracellular ion pathway seems to be hydrated in the open and closed states to similar extents. Mutagenesis of sites in the inner gate suggests that it acts as an intracellular entry funnel, whose architecture and composition modulate water influx and efflux within the channel pore. Our results highlight the potential of genetic code expansion technology combined with biophysical methods to investigate channel gating, particularly hydration dynamics at specific sites, with a so far unprecedented spatial resolution.


Assuntos
Channelrhodopsins/química , Channelrhodopsins/metabolismo , Azidas/química , Channelrhodopsins/genética , Códon de Terminação , Células HEK293 , Humanos , Sondas Moleculares/química , Mutagênese Sítio-Dirigida , Fenilalanina/análogos & derivados , Fenilalanina/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
J Biol Chem ; 292(34): 14205-14216, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28659342

RESUMO

Channelrhodopsins (ChRs) are light-gated ion channels widely used for activating selected cells in large cellular networks. ChR variants with a red-shifted absorption maximum, such as the modified Volvox carteri ChR1 red-activatable channelrhodopsin ("ReaChR," λmax = 527 nm), are of particular interest because longer wavelengths allow optical excitation of cells in deeper layers of organic tissue. In all ChRs investigated so far, proton transfer reactions and hydrogen bond changes are crucial for the formation of the ion-conducting pore and the selectivity for protons versus cations, such as Na+, K+, and Ca2+ (1). By using a combination of electrophysiological measurements and UV-visible and FTIR spectroscopy, we characterized the proton transfer events in the photocycle of ReaChR and describe their relevance for its function. 1) The central gate residue Glu130 (Glu90 in Chlamydomonas reinhardtii (Cr) ChR2) (i) undergoes a hydrogen bond change in D → K transition and (ii) deprotonates in K → M transition. Its negative charge in the open state is decisive for proton selectivity. 2) The counter-ion Asp293 (Asp253 in CrChR2) receives the retinal Schiff base proton during M-state formation. Starting from M, a photocycle branching occurs involving (i) a direct M → D transition and (ii) formation of late photointermediates N and O. 3) The DC pair residue Asp196 (Asp156 in CrChR2) deprotonates in N → O transition. Interestingly, the D196N mutation increases 15-syn-retinal at the expense of 15-anti, which is the predominant isomer in the wild type, and abolishes the peak current in electrophysiological measurements. This suggests that the peak current is formed by 15-anti species, whereas 15-syn species contribute only to the stationary current.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Clorófitas/metabolismo , Modelos Moleculares , Proteínas de Plantas/metabolismo , Rodopsina/metabolismo , Proteínas de Algas/química , Proteínas de Algas/genética , Substituição de Aminoácidos , Domínio Catalítico/efeitos da radiação , Chlamydomonas reinhardtii/efeitos da radiação , Clorófitas/efeitos da radiação , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Ligação de Hidrogênio/efeitos da radiação , Luz , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformação Proteica/efeitos da radiação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rodopsina/química , Rodopsina/genética , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Biophys J ; 112(6): 1166-1175, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355544

RESUMO

Channelrhodopsins (ChRs) are light-activated ion channels widely employed for photostimulation of excitable cells. This study focuses on ReaChR, a chimeric ChR variant with optimal properties for optogenetic applications. We combined electrophysiological recordings with infrared and UV-visible spectroscopic measurements to investigate photocurrents and photochemical properties of ReaChR. Our data imply that ReaChR is green-light activated (λmax = 532 nm) with a non-rhodopsin-like action spectrum peaking at 610 nm for stationary photocurrents. This unusual spectral feature is associated with photoconversion of a previously unknown light-sensitive, blue-shifted photocycle intermediate L (λmax = 495 nm), which is accumulated under continuous illumination. To explain the complex photochemical reactions, we propose a symmetrical two-cycle-model based on the two C15=N isomers of the retinal cofactor with either syn- or anti-configuration, each comprising six consecutive states D, K, L, M, N, and O. Ion conduction involves two states per cycle, the late M- (M2) with a deprotonated retinal Schiff base and the consecutive green-absorbing N-state that both equilibrate via reversible reprotonation. In our model, a fraction of the deprotonated M-intermediate of the anti-cycle may be photoconverted-as the L-state-back to its inherent dark state, or to its M-state pendant (M') of the syn-cycle. The latter reaction pathway requires a C13=C14, C15=N double-isomerization of the retinal chromophore, whereas the intracircular photoconversion of M back to D involves only one C13=C14 double-bond isomerization.


Assuntos
Absorção de Radiação , Processos Fotoquímicos , Rodopsina/química , Rodopsina/metabolismo , Cor , Células HEK293 , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...