Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21092, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036555

RESUMO

This study introduces a low-field NMR spectrometer (LF-NMR) featuring a multilayer Halbach magnet supported by a combined mechanical and electrical shimming system. This setup offers improved field homogeneity and sensitivity compared to spectrometers relying on typical Halbach and dipole magnets. The multilayer Halbach magnet was designed and assembled using three nested cylindrical magnets, with an additional inner Halbach layer that can be rotated for mechanical shimming. The coils and shim-kernel of the electrical shimming system were constructed and coated with layers of zirconia, thermal epoxy, and silver-paste resin to facilitate passive heat dissipation and ensure mechanical and thermal stability. Furthermore, the 7-channel shim coils were divided into two parts connected in parallel, resulting in a reduction of joule heating temperatures from 96.2 to 32.6 °C. Without the shimming system, the Halbach magnet exhibits a field inhomogeneity of approximately 140 ppm over the sample volume. The probehead was designed to incorporate a solenoidal mini coil, integrated into a single planar board. This design choice aimed to enhance sensitivity, minimize [Formula: see text] inhomogeneity, and reduce impedance discrepancies, transmission loss, and signal reflections. Consequently, the resulting linewidth of water within a 3 mm length and 2.4 mm inner diameter sample volume was 4.5 Hz. To demonstrate the effectiveness of spectral editing in LF-NMR applications at 29.934 MHz, we selectively excited hydroxyl and/or methyl protons in neat acetic acid using optimal control pulses calculated through the Krotov algorithm.

2.
Biosensors (Basel) ; 13(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37185547

RESUMO

A wide-field surface plasmon resonance (SPR) microscopy sensor employs the surface plasmon resonance phenomenon to detect individual biological and non-biological nanoparticles. This sensor enables the detection, sizing, and quantification of biological nanoparticles (bioNPs), such as extracellular vesicles (EVs), viruses, and virus-like particles. The selectivity of bioNP detection does not require biological particle labeling, and it is achieved via the functionalization of the gold sensor surface by target-bioNP-specific antibodies. In the current work, we demonstrate the ability of SPR microscopy sensors to detect, simultaneously, silica NPs that differ by four times in size. Employed silica particles are close in their refractive index to bioNPs. The literature reports the ability of SPR microscopy sensors to detect the binding of lymphocytes (around 10 µm objects) to the sensor surface. Taken together, our findings and the results reported in the literature indicate the power of SPR microscopy sensors to detect bioNPs that differ by at least two orders in size. Modifications of the optical sensor scheme, such as mounting a concave lens, help to achieve homogeneous illumination of a gold sensor chip surface. In the current work, we also characterize the improved magnification factor of the modified SPR instrument. We evaluate the effectiveness of the modified and the primary version of the SPR microscopy sensors in detecting EVs isolated via different approaches. In addition, we demonstrate the possibility of employing translation and rotation stepper motors for precise adjustments of the positions of sensor optical elements-prism and objective-in the primary version of the SPR microscopy sensor instrument, and we present an algorithm to establish effective sensor-actuator coupling.


Assuntos
Vesículas Extracelulares , Nanopartículas , Ressonância de Plasmônio de Superfície/métodos , Microscopia , Nanopartículas/química , Dióxido de Silício , Ouro , Emprego
3.
Sensors (Basel) ; 20(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227898

RESUMO

Nanoparticle Tracking Analysis (NTA) allows for the simultaneous determination of both size and concentration of nanoparticles in a sample. This study investigates the accuracy of particle size and concentration measurements performed on an LM10 device. For experiments, standard nanoparticles of different sizes composed of two materials with different refractive indices were used. Particle size measurements were found to have a decent degree of accuracy. This fact was verified by the manufacturer-reported particle size-determined by transmission electron microscopy (TEM)-as well as by performed scanning electron microscopy (SEM) measurements. On the other hand, concentration measurements resulted in overestimation of the particle concentration in majority of cases. Thus, our findings confirmed the accuracy of nanoparticle sizing performed by the LM10 instrument and highlighted the overestimation of particle concentration made by this device. In addition, an approach of swift correction of the results of concentration measurements received for samples is suggested in the presented study.

4.
Environ Sci Eur ; 28(1): 10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27752445

RESUMO

BACKGROUND: Literature data indicate that terrestrial life stages of amphibians may be more sensitive to xenobiotics than birds or mammals. It is hypothesized that dermal exposure could potentially be a significant route of exposure for amphibians, as there is evidence that their skin is more permeable than the skin of other vertebrate species. Thus, higher amounts of xenobiotics might enter systemic circulation by dermal uptake resulting in adverse effects. Heretofore, no guidelines exist to investigate dermal toxicity of chemicals to amphibians. In order to minimize vertebrate testing, this work was targeted to develop an in vitro test system as a possible model to assess the dermal uptake of chemicals across amphibian skin. RESULTS: The dermal absorption in vitro method (OECD guideline 428), an established toxicological (mammal) test procedure, was adapted to amphibian skin, in a first approach using the laboratory model organism Xenopus laevis and reference compounds (caffeine and testosterone). Skin permeability to both reference substances was significantly higher compared to published mammalian data. Caffeine permeated faster across the skin than testosterone, with ventral skin tending to be more permeable than dorsal skin. As usage of frozen mammalian skin is accepted, frozen skin of X. laevis was tested in parallel. To the freshly excised skin, however, freezing led to increased skin permeability, in particular to caffeine, indicating a loss of skin integrity due to freezing (without additional preservation measures). CONCLUSIONS: This work has demonstrated that the chosen method can be applied successfully to amphibian skin, providing the basis for further investigations. In future, well-established in vitro test systems and a broad dataset for many chemicals may help assess potential amphibian risk from xenobiotics without the need for extensive vertebrate testing.

5.
Atherosclerosis ; 240(1): 61-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25756910

RESUMO

OBJECTIVE: Significant sex differences exist in cardiovascular diseases. Although an impact of gonadal hormones is presumed, it is largely unknown whether sexually dimorphic gene expression also plays a role and whether cells themselves show intrinsic sex differences. METHODS: We performed whole genome expression analyses in human umbilical vein endothelial cells (HUVEC) from 20 male and 20 female donors and compared levels of gene transcription between the sexes. To further assess whether there is a sex-specific response to stress, we subjected male and female HUVEC to shear for 24 h and analysed changes in gene expression. RESULTS: Genes indicative for greater immune responsiveness were stronger expressed in female compared to male HUVEC. There was a significant enrichment of 77 immune-related genes in female HUVEC. These increased transcriptional levels in female cells were verified for 20 genes by real-time RT-PCR. 6.7% of all mRNAs were regulated by shear stress. Female HUVEC showed a more pronounced transcriptional response to shear than did their male counterparts. In addition to quantitative differences, a number of genes were regulated in the opposite direction between the two sexes by shear stress. Functionally, female HUVEC showed a higher cell viability after serum starvation and an increased tube formation capacity compared to male cells. CONCLUSION: These findings underscore the importance for differentiation between male and female cells in cell culture experiments. This may apply not only to endothelial cells but might be generalized to other cell types as well. The observed sexual dimorphisms in gene expression in endothelial cells may contribute to sex differences between males and females in endothelial function.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Caracteres Sexuais , Transcrição Gênica , Sobrevivência Celular , Células Cultivadas , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Marcadores Genéticos , Humanos , Masculino , Neovascularização Fisiológica , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Fatores Sexuais , Estresse Mecânico , Estresse Fisiológico , Fatores de Tempo
6.
PLoS One ; 9(1): e79616, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497911

RESUMO

Division of labor is a defining characteristic of social insects and fundamental to their ecological success. Many of the numerous tasks essential for the survival of the colony must be performed at a specific location. Consequently, spatial organization is an integral aspect of division of labor. The mechanisms organizing the spatial distribution of workers, separating inside and outside workers without central control, is an essential, but so far neglected aspect of division of labor. In this study, we investigate the behavioral mechanisms governing the spatial distribution of individual workers and its physiological underpinning in the ant Myrmica rubra. By investigating worker personalities we uncover position-associated behavioral syndromes. This context-independent and temporally stable set of correlated behaviors (positive association between movements and attraction towards light) could promote the basic separation between inside (brood tenders) and outside workers (foragers). These position-associated behavior syndromes are coupled with a high probability to perform tasks, located at the defined position, and a characteristic cuticular hydrocarbon profile. We discuss the potentially physiological causes for the observed behavioral syndromes and highlight how the study of animal personalities can provide new insights for the study of division of labor and self-organized processes in general.


Assuntos
Formigas/fisiologia , Distribuição Animal , Animais , Formigas/anatomia & histologia , Comportamento Alimentar , Feminino , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...