Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Plant Physiol Biochem ; 207: 108374, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38310724

RESUMO

Weed infestation is a significant concern to crop yield loss, globally. The potent broad-spectrum glyphosate (N-phosphomethyl-glycine) has a widely utilized herbicide, acting on the shikimic acid pathway within chloroplast by inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). This crucial enzyme plays a vital role in aromatic amino acid synthesis. Repurposing of CRISPR/Cas9-mediated gene-editing was the inflection point for generating novel crop germplasm with diverse genetic variations in essential agronomic traits, achieved through the introduction of nucleotide substitutions at target sites within the native genes, and subsequent induction of indels through error-prone non-homologous end-joining DNA repair mechanisms. Here, we describe the development of efficient herbicide-resistant maize lines by using CRISPR/Cas9 mediated site-specific native ZmEPSPS gene fragment replacement via knock-out of conserved region followed by knock-in of desired homologous donor repair (HDR-GATIPS-mZmEPSPS) with triple amino acid substitution. The novel triple substitution conferred high herbicide tolerance in edited maize plants. Transgene-free progeny harbouring the triple amino acid substitutions revealed agronomic performances similar to that of wild-type plants, suggesting that the GATIPS-mZmEPSPS allele substitutions are crucial for developing elite maize varieties with significantly enhanced glyphosate resistance. Furthermore, the aromatic amino acid contents in edited maize lines were significantly higher than in wild-type plants. The present study describing the introduction of site-specific CRISPR/Cas9- GATIPS mutations in the ZmEPSPS gene via genome editing has immense potential for higher tolerance to glyphosate with no yield penalty in maize.


Assuntos
Herbicidas , Zea mays , Zea mays/genética , Edição de Genes , Sistemas CRISPR-Cas , Resistência a Herbicidas/genética , Glifosato , Herbicidas/farmacologia , Aminoácidos Aromáticos/genética
2.
J Biomol Struct Dyn ; : 1-16, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652402

RESUMO

Prospectively, agroecosystems for the growth of crops provide the potential fertile, productive, and tropical environment which attracts infestation by weedy plant species that compete with the primary crop plants. Infestation by weed is a major biotic stress factor faced by pigeonpea that hampers the productivity of the crop. In the modern era with the development of chemicals the problem of weed infestation is dealt with armours called herbicides. The most widely utilized, post-emergent, broad-spectrum herbicide has an essential active ingredient called glyphosate. Glyphosate mechanistically inhibits a chloroplastic enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) by competitively interacting with the PEP binding site which hinders the shikimate pathway and the production of essential aromatic amino acids (Phe, Tyr, Trp) and other secondary metabolites in plants. Moreover, herbicide spray for weed management is lethal to both the primary crop and the weeds. Therefore, it is critical to develop herbicide-resistant crops for field purposes to reduce the associated yield and economic losses. In this study, the in-silico analysis drove the selection and validation of the point mutations in the conserved region of the EPSPS gene, which confers efficient herbicide resistance to mutated-CcEPSPS enzyme along with the retention of the normal enzyme function. An optimized in-silico validation of the target mutation before the development of the genome-edited resistant plant lines is a prerequisite for testing their efficacy as a proof of concept. We validated the combination of GATIPS mutation for its no-cost effect at the enzyme level via molecular dynamic (MD) simulation.Communicated by Ramaswamy H. Sarma.


HIGHLIGHTSWeed infestation is a major biotic stress factor and a consistent problem in agriculture.Development of glyphosate-resistant mutation is crucial to minimize the yield loss in agriculturally or nutritionally important crops for field application.Present in-silico approach is a proof-of-concept for validation of the selected glyphosate-resistant mutations.The current study has validated the combination of GATIPS mutation for its glyphosate-resistant phenotype and no negative cost effect at the enzyme simulation level.

4.
Front Plant Sci ; 14: 1122926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959937

RESUMO

Globally, CRISPR-Cas9-based genome editing has ushered in a novel era of crop advancements. Weeds pose serious a threat to rice crop productivity. Among the numerous herbicides, glyphosate [N-(phosphonomethyl)-glycine] has been employed as a post-emergent, broad-spectrum herbicide that represses the shikimate pathway via inhibition of EPSPS (5'-enolpyruvylshikimate-3-phosphate synthase) enzyme in chloroplasts. Here, we describe the development of glyphosate-resistant rice lines by site-specific amino acid substitutions (G172A, T173I, and P177S: GATIPS-mOsEPSPS) and modification of phosphoenolpyruvate-binding site in the native OsEPSPS gene employing fragment knockout and knock-in of homology donor repair (HDR) template harboring desired mutations through CRISPR-Cas9-based genome editing. The indigenously designed two-sgRNA OsEPSPS-NICTK-1_pCRISPR-Cas9 construct harboring rice codon-optimized SpCas9 along with OsEPSPS-HDR template was transformed into rice. Stable homozygous T2 edited rice lines revealed significantly high degree of glyphosate-resistance both in vitro (4 mM/L) and field conditions (6 ml/L; Roundup Ready) in contrast to wild type (WT). Edited T2 rice lines (ER1-6) with enhanced glyphosate resistance revealed lower levels of endogenous shikimate (14.5-fold) in contrast to treated WT but quite similar to WT. ER1-6 lines exhibited increased aromatic amino acid contents (Phe, two-fold; Trp, 2.5-fold; and Tyr, two-fold) than WT. Interestingly, glyphosate-resistant Cas9-free EL1-6 rice lines displayed a significant increment in grain yield (20%-22%) in comparison to WT. Together, results highlighted that the efficacy of GATIPS mutations in OsEPSPS has tremendously contributed in glyphosate resistance (foliar spray of 6 ml/L), enhanced aromatic amino acids, and improved grain yields in rice. These results ensure a novel strategy for weed management without yield penalties, with a higher probability of commercial release.

5.
PeerJ ; 11: e14845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935928

RESUMO

Plants have a complex system of stress response that deals with different types of stresses. Maize (Zea mays L.), one of the most important crops grown throughout the world, across a range of agro-ecological environments, employs complex mechanisms of gene regulation in response to drought stress. HKI 335 is a tropical maize inbred line showing remarkable adaptation to drought stress. Abiotic stresses, like drought, trigger the production of reactive oxygen species (ROS) due to the incomplete reduction or excitation of molecular oxygen, eventually leading to cell damage. Superoxide dismutase (SOD, EC 1.15.1.1) is a metalloenzyme that acts as the first line of defense against ROS. We cloned the Sod2 gene from HKI 335 inbred line and analyzed its protein through detailed in silico characterization. Our comparative modeling revealed that at the level of tertiary structure, the HKI 335 SOD2 protein is highly similar to Potentilla atrosanguinea SOD2, which had been previously identified as highly thermostable SOD that can tolerate autoclaving as well as sub-zero temperatures. We performed phylogenetic analysis, estimated physicochemical properties, post-translational modifications, protein-protein interactions, and domain composition of this SOD2. The phylogenetic analysis showed that orthologous sequences of SOD from different species were clustered into two clusters. Secondary structure prediction indicates that SOD2 is a soluble protein and no transmembrane domains have been found. Most of the beta sheets have RSA value greater than 2. The Ramachandran plot from PDBsum revealed that most of the residues fall in the highly favored region. It was estimated that the value of the instability index was less than 40, the value of the aliphatic index was extremely high and the GRAVY value lies between -2 and +2. We could identify only one phosphorylation site, located at position 20 with a score of 0.692. Overall, the unique stress-tolerant properties of the HKI 335 SOD2, may be one of the reasons contributing to the high drought tolerance trait exhibited by HKI 335 maize inbred line. Further research may reveal more insights into the drought adaptation mechanism in maize and the eventual deployment of the trait in maize hybrids.


Assuntos
Secas , Zea mays , Zea mays/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/genética , Filogenia , Plântula/genética , Superóxido Dismutase/genética , Clonagem Molecular , Óxidos/metabolismo , Zinco/metabolismo
6.
J Genet Eng Biotechnol ; 21(1): 8, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695935

RESUMO

BACKGROUND: Cadmium is a non-essential, third largest heavy metal contaminant with long retention time that poses environmental hazards. It emanating majorly from industrial processes and phosphate fertilizers. Cadmium is effortlessly assimilated by plants and leads to yield loss. Henceforth, identification of mechanisms to attenuate the heavy metal toxicity in crops is beneficial for enhanced yields. RESULTS: Beneficial soil bacteria have been known to combat both biotic and abiotic stress, thereby promoting plant growth. Amongst them, Pseudomonas fluorescens has been shown to enhance abiotic stress resistance in umpteen crops for instance maize and groundnut. Here, we investigated the role of P. fluorescens in conferring cadmium stress resistance in Arabidopsis thaliana. In silico analysis of PCR2 gene and promoter revealed the role, in cadmium stress resistance of A. thaliana. Real-time expression analysis employing qRT-PCR ratified the upregulation of AtPCR2 transcript under cadmium stress up to 6 folds. Total leaf (50%), biomass (23%), chlorophyll content (chlorophyll-a and b 40%, and 36 %) silique number (50%), and other growth parameters significantly improved on bacterial treatment of the 2mM Cd-stressed plants. CONCLUSION: Moreover, generated 35s-promoter driven AtPCR2 over-expressing transgenic lines that exhibited resistance to cadmium and other heavy metal stress. Taken together, a crucial interplay of P. fluorscens mediated enhanced expression of AtPCR2 significantly induced cadmium stress resistance in Arabidopsis plants.

7.
J Biomol Struct Dyn ; 41(15): 7490-7510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36111599

RESUMO

Zinc plays a very critical role and function in all organisms. Its deficiency can cause a serious issue. In Oryza sativa, the ZRT/IRT transporter-like proteins play a role in the zinc metal uptake and transport. Few OsZIPs genes have been validated and characterized for their biological functions and most of OsZIPs are not well physiologically, biochemically and phenotypically characterized. In the current study, they analyzed for their function through subcellular localization, phylogenetic analysis, homology modeling, expression analysis, protein-protein interaction (PPI) network prediction, and prediction of their binding sites. Hierarchical clustering of OsZIP genes based on different anatomical parts and developmental stages also orthologs prediction was identified. The presence of SNPs, SSRs, ESTs, FSTs, MPSS, and SAGE tags were analyzed for useful development of markers. SNPs were identified in all OsZIPs genes and each gene was further classified based on their number and position in the 3'UTR and 5'UTR regions of the gene-specific sequences. Binding clusters and their location on the protein sequences were predicted. We found Changing in residues number and position which were due to partial overlapping and sequence alignment, but they share the same mechanism of binding and transporting Zinc. A wide range of CRISPR Cas9 gRNAs was designed based on single nucleotide polymorphism (SNP) for each OsZIP transporter gene for well-function identification and characterization with genome-wide association studies. Hence this study would provide useful information, understanding, and predicting molecular insights for the future studies that will help for improvement of nutritional quality of rice varieties.Communicated by Ramaswamy H. Sarma.

8.
Front Plant Sci ; 13: 739654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267942

RESUMO

Rice bean is a less-known underutilized legume crop with a high nutritional value among members of the Vigna family. As an initiative to compose rice bean (Vigna umbellata) genomic resource, the size of 414 mega-base pairs with an estimated identification of 31,276 high confidence index genes via 15,521 scaffolds generated from Illumina and PacBio platform 30X coverage data has achieved 96.08% functional coverage data from Illumina and PacBio platform. Rice bean genome assembly was found to be exquisitely close to Vigna angularis (experimental control/outgroup), Vigna radiata, and Vigna unguiculata, however, Vigna angularis being the closest. The assembled genome was further aligned with 31 leguminous plants (13 complete genomes and 18 partial genomes), by collinearity block mapping. Further, we predicted similar discriminant results by complete coding sequence (CDS) alignment. In contrast, 17 medically influential genomes from the National Institute of General Medical Sciences-National Institutes of Health NIGMS-NIH, when compared to rice bean assembly for LCB clusters, led to the identification of more than 18,000 genes from the entire selected medicinal genomes. Empirical construction of all genome comparisons revealed symplesiomorphic character in turn uncovering the lineage of genetic and functional features of rice beans. Significantly, we found deserving late-flowering genes, palatably indexed uncommon genes that regulate various metabolite pathways, related to abiotic and biotic stress pathways and those that are specific to photoperiod and disease resistance and so on. Therefore, the findings from this report address the genomic value of rice bean to be escalated via breeding by allied and applied approaches.

9.
Physiol Mol Biol Plants ; 28(4): 885-898, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35592478

RESUMO

The post green revolution agriculture is based on generous application of fertilizers and high-yielding genotypes that are suited for such high input regimes. Cereals, like maize (Zea mays L.) are capable of utilizing less than 20% of the applied inorganic phosphate (Pi) - a non-renewable fertilizer resource. A greater understanding of the molecular mechanisms underlying the acquisition, transportation and utilization of Pi may lead to engineering genotypes with high phosphorus use efficiency. In this study, we carried out functional domain similarity analysis, promoter analysis and comparative transcriptional expression profiling of 12 selected Pi responsive genes in the Pi stress tolerant maize inbred line HKI-163 under sufficient and deficient Pi conditions. Pi starvation led to significant increase in root length; marked proliferation of root hairs and lesser number of crown roots. Eleven genes were significantly up or down regulated in Pi deficient condition. The putative acid phosphatase, ZmACP5 expression was up regulated by 162.81 and 74.40 fold in root and leaf tissues, respectively. The RNase, ZmRNS1 showed 115 fold up regulation in roots under Pi deprivation. Among the two putative high affinity Pi transporters ZmPht1;4 was found specific to root, whereas ZmPht2 was found to be up regulated in both root and leaf tissues. The genes involved in Pi homeostasis pathway (ZmSIZ1, SPX1 and Pho2) were up regulated in root and leaf. In light of the expression profiling of selected regulatory genes, an updated model of transcriptional regulation under Pi starvation in maize has been presented. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01155-x.

10.
Plant Cell Rep ; 41(3): 619-637, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34383122

RESUMO

KEY MESSAGE: Stacking Glutathione-Ascorbate pathway genes (PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR) under stress inducible promoter RD29A imparts significant tolerance to drought and salinity stress in Solanum lycopersicum. Although the exposure of plants to different environmental stresses results in overproduction of reactive oxygen species (ROS), many plants have developed some unique systems to alleviate the ROS production and mitigate its deleterious effect. One of the key pathways that gets activated in plants is ascorbate glutathione (AsA-GSH) pathway. To demonstrate the effect of this pathway in tomato, we developed the AsA-GSH overexpression lines by stacking the genes of the AsA-GSH pathway genes isolated from Pennisetum glaucoma (Pg) including PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR under stress inducible promoter RD29A. The overexpression lines have an improved germination and seedling growth with concomitant elevation in the survival rate. The exposure of transgenic seedlings to varying stress regiments exhibited escalation in the antioxidant enzyme activity and lesser membrane damage as reflected by decreased electrolytic leakage and little accumulation of malondialdehyde and H2O2. Furthermore, the transgenic lines accumulated high levels of osmoprotectants with increase in the relative water content. The increased photosynthetic activity and enhanced gaseous exchange parameters further confirmed the enhanced tolerance of AsA-GSH overexpression lines. We concluded that pyramiding of AsA-GSH pathway genes is an effective strategy for developing stress resistant crops.


Assuntos
Secas , Solanum lycopersicum , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino/genética , Plântula , Estresse Fisiológico/genética
11.
Methods Mol Biol ; 2238: 81-91, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33471326

RESUMO

Developing an efficient and reproducible plant transformation protocol relies on callus induction and plant regeneration, which is prerequisite for genetic enhancement of crops, especially rice. The present study has been carried out in order to establish a genotype-independent regeneration and biolistic transformation protocol for rice varieties. Putative transgenic rice lines were confirmed by PCR analysis, DNA sequencing, and Southern analysis. The transformation protocol reported here is relatively simple and consistent and can be exploited in future biotechnological investigations particularly for gene transformation studies.


Assuntos
Técnicas de Transferência de Genes , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regeneração , Transformação Genética , Transgenes/fisiologia , Genótipo , Oryza/genética , Plantas Geneticamente Modificadas/genética
12.
Bioinformation ; 17(8): 727-730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35540694

RESUMO

Purple acid phosphatases belong to metallo-phosphatase family. Intracellular phosphatases are crucial for phosphorus (P) distribution in the cell and are highly induced in phosphorus-deprived conditions in the soil. Disparate PAP isoforms exist within discrete subcellular compartments in Setaria italica and their expression in P deprived conditions fosters phosphorus amelioration. We isolated the SiPAP18 gene and developed the homology SiPAP18 protein model based on the crystal structure of the Kidney bean PvPAP (PDB ID: 2QFP) as template (sequence similarity 42.7%) using Modeller 9.12 with adequate validation. Structure model analysis shows the significance of five conserved signatures with seven metal-paired amino acid residues during P-deprivation induced phosphorus amelioration.

13.
J Biomol Struct Dyn ; 39(12): 4462-4471, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32567493

RESUMO

Breast cancer is one of the most prevalent malignancy cancer types especially affecting women globally. EGFR is a proto onco gene as well as the first identified tyrosine kinase receptor. It plays a dynamic role in many biological tasks such as apoptosis, cell cycle progression, differentiation, development and transcription. Somatic mutation in the EGFR kinase domain derails the normal kinase activity and over expression leads to the progression of cancer especially breast cancer. EGFR is one of the well-known therapeutic targets for breast cancer. In this scenario, we attempt to identify novel potent inhibitors of EGFR. Initially, we performed structure-based virtual screening and identified four potential compounds effective against EGFR. Further, the compounds were subjected to ADME prediction as part of evaluation of the druggability and all the four compounds found to fall under satisfactory range with predicted pharmacokinetic properties. Eventually, the conformational stability of protein-ligand complex was analyzed at different time scale by using Gromacs software. Molecular dynamics simulation run of 20 ns is carried out and results were analyzed using root mean square deviation (RMSD), root mean square fluctuation (RMSF) to signify the stability of protein-igand complex. The stability of the protein-ligand complex is more stable throughout entire simulation. From the results obtained from in silico studies, we propose that these compounds are exceptionally useful for further lead optimization and drug development.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias da Mama , Simulação de Dinâmica Molecular , Neoplasias da Mama/tratamento farmacológico , Detecção Precoce de Câncer , Receptores ErbB/metabolismo , Feminino , Humanos , Simulação de Acoplamento Molecular
14.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-33361628

RESUMO

Genome editing (GE) technology has emerged as a multifaceted strategy that instantaneously popularised the mechanism to modify the genetic constitution of an organism. The clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas) protein-based genome editing (CRISPR/Cas) approach has huge potential for efficacious editing of genomes of numerous organisms. This framework has demonstrated to be more economical in contrast to mega-nucleases, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs) for its flexibility, versatility, and potency. The advent of sequence-specific nucleases (SSNs) allowed the precise induction of double-strand breaks (DSBs) into the genome, ensuring desired alterations through non-homologous end-joining (NHEJ) or homology-directed repair (HDR) pathways. Researchers have utilized CRISPR/Cas-mediated genome alterations across crop varieties to generate desirable characteristics for yield enhancement, enriched nutritional quality, and stressresistance. Here, we highlighted the recent progress in the area of nutritional improvement of crops via the CRISPR/Cas-based tools for fundamental plant research and crop genetic advancements. Application of this genome editing aids in unraveling the basic biology facts in plants supplemented by the incorporation of genome-wide association studies, artificial intelligence, and various bioinformatic frameworks, thereby providing futuristic model studies and their affirmations. Strategies for reducing the 'off-target' effects and the societal approval of genome-modified crops developed via this modern biotechnological approach have been reviewed.


Assuntos
Inteligência Artificial , Sistemas CRISPR-Cas/genética , Produtos Agrícolas/genética , Edição de Genes/métodos , Quebras de DNA de Cadeia Dupla , Endonucleases/genética , Genoma de Planta/genética
15.
Mol Cell Biochem ; 474(1-2): 277-284, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32740790

RESUMO

Autism is a prevalent developmental disorder that combines repetitive behaviours, social deficits and language abnormalities. The present study aims to assess the autistic subjects using DSM IV-TR criteria followed with the analysis of neurotransmitters, biochemical parameters, oxidative stress and its ions in two groups of autistic subjects (group I < 12 years; group II ≥ 12 years). Antioxidants show a variation of 10% increase in controls compared to autistic age < 12 years. The concentration of pyruvate kinase and hexokinase is elevated in controls approximately 60% and 45%, respectively, with the significance of 95 and 99%. Autistic subjects showed marked variation in levels of neurotransmitters, oxidative stress and its related ions. Cumulative assessment of parameters related to biochemical markers and neurotransmitters paves the way for autism-based research, although these observations draw interest in an integrated approach for autism.


Assuntos
Antioxidantes/análise , Transtorno Autístico/patologia , Biomarcadores/sangue , Hexoquinase/sangue , Neurotransmissores/sangue , Estresse Oxidativo , Piruvato Quinase/sangue , Transtorno Autístico/sangue , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino
16.
Food Front ; 1(2): 168-179, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32838301

RESUMO

Angiotensin converting enzyme 2 (ACE2) and main protease (MPro) are significant target proteins, mainly involved in the attachment of viral genome to host cells and aid in replication of severe acute respiratory syndrome-coronaviruses or SARS-CoV genome. In the present study, we identified 11 potent bioactive compounds from ethanolic leaf extract of Ipomoea obscura (L.) by using GC-MS analysis. These potential bioactive compounds were considered for molecular docking studies against ACE2 and MPro target proteins to determine the antiviral effects against SARS-COV. Results exhibits that among 11 compounds from I. obscura (L.), urso-deoxycholic acid, demeclocycline, tetracycline, chlorotetracycline, and ethyl iso-allocholate had potential viral inhibitory activity. Hence, the present findings suggested that chemical constitution present in I. obscura (L.) will address inhibition of corona viral replication in host cells.

17.
Epilepsy Behav ; 111: 107277, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32653844

RESUMO

Rett syndrome (RTT) is a stern dominant progressive neurological development disorder linked with X chromosome ranking second for mental slowdown, exclusively in females after few months of birth with normal development and growth period. Genetically any defects in universally expressed methyl-CpG binding protein 2 (MeCP2) transcription regulator gene are considered as radix for RTT in almost all the previous studies. Our study mainly focuses in unraveling the genetic alterations like identifying MeCP2 gene polymorphisms, chromosomal abnormalities, or X-chromosome inactivation (XCI) as underlying cause of RTT in prototypes sorted through Diagnostic and Statistical Manual of Mental Disorders-Text Revised (DSM IV). In addition, we have examined the probable surrogates of brain function disabilities like serotonin, homocysteine (Hcy), calcium, potassium, and lead from blood in both RTT porotypes and their mothers. In our investigation, we have observed varied amino acid substitution of MeCP2 and varied frequency of skewed XCI in RTT prototype. Our study validates that the demonstration of chromosomal analysis, biochemical analysis, and genomic observations helps in concluding RTT condition and can be helpful in providing appropriate treatment and counseling as well as improve the currently available protocol of diagnosis.


Assuntos
Análise Citogenética/métodos , Proteína 2 de Ligação a Metil-CpG/genética , Técnicas de Diagnóstico Molecular/métodos , Mães , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Hibridização in Situ Fluorescente/métodos , Mutação/genética , Adulto Jovem
18.
Med Hypotheses ; 143: 110098, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32688185

RESUMO

The neoteric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been jeopardizing the world with the symptoms of seasonal flu. The virus contagion predicted to have been originated from Wuhan, China has by far trapped 4,198,418 cases from 212 countries in the world with two international conveyances with 284,102 deaths as of 11 May 2020 (10:18 GMT). Researchers around the globe have indulged in deciphering viral mode in the body for devising a cure. Affirmations from autopsies and preliminary findings on SARS-CoV-2 hypothesized on viral pathogenesis within the host, for instance, source of inflammation in lungs and pneumonia. This hypothesis assigns the platelets as agents of infection after viral entry. Presently, curbing infection to stall the spread of SARS-CoV-2 is the prima facie intervention employed, worldwide. However, public health authorities must monitor the state of affairs scrupulously, as the deeper our understanding of this novel virus and its associated outbreak, the better we can deal with it. Knowing this idea might be far-fetched, yet this postulate would serve as the groundwork for the present situation.


Assuntos
Plaquetas/virologia , Infecções por Coronavirus/sangue , Pulmão/virologia , Pneumonia Viral/sangue , Betacoronavirus , COVID-19 , China , Citocinas/metabolismo , Humanos , Inflamação/sangue , Inflamação/virologia , Megacariócitos/virologia , Pandemias , SARS-CoV-2
19.
Plant Methods ; 16: 47, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280363

RESUMO

BACKGROUND: Crocus sativus is a recalcitrant plant for genetic transformation and genetic improvement, largely due to difficulties in Agrobacterium mediated transformation and vegetative reproduction. Effective genome editing requires proficient callus production and an efficient method to deliver Cas9 and sgRNAs into the plant. Here, we demonstrate Agrobacterium-mediated transformation of saffron. Further, we developed a CRISPR-Cas9 based system in this plant, for efficient gene knockout or edits in future. RESULTS: Efficient callus production and regeneration confers important benefits in developing competent transformation system in plants. More than 70% multiplication rate of callus initiation was achieved from corm slices of saffron subjected to a two-step sterilization procedure and grown on complete MS medium supplemented with 2,4-D (0.5 mg/L), BAP (1 mg/L), IAA (1 mg/L), photoperiod of 16/8 h and 45% relative humidity at 20 ± 2 °C. In vitro cormlet generation was accomplished in 8 weeks by using mature somatic embryos on MS medium supplemented with TDZ (0.5 mg/L) + IAA (1 mg/L) + Activated charcoal (0.1 g/L) at 15 ± 2 °C. The attempt of using Agrobacterium-mediated transformation resulted in successful integration of the binary vector into the somatic embryos of saffron with a transformation efficiency of 4%. PCR and Southern blot analysis confirmed the integration of Cas9 into saffron. CONCLUSION: The protocol for callus production, somatic embryogenesis and regeneration was standardised. Successful demonstration of integrated Cas9 in this study constitutes first step in developing strategies for genetic manipulation of saffron, which has so far been considered recalcitrant. Furthering the development of this technology holds significant potential for advancing genetic research in saffron by integrating multigene targeting and/or use of recyclable cassettes.

20.
J Biomol Struct Dyn ; 38(12): 3633-3647, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31621500

RESUMO

Transcription factor NAM-B1 has a major role in the process of senescence, which results in higher Fe and Zn concentrations in grains of wild wheat (T. durum; Td). The absence of the wild type NAMB1 in T. aestivum (Ta), one of the cardinal crops essential for more than 1/3rd of the global population, affects Fe and Zn remobilisation to the maturing grain from the flag leaf resulting in lesser micronutrient bioavailability. The cardinal difference in the NAMB1 gene between the two species is the absence of +1 bp allele in Ta. Insilico studies using NAMB1 from Td and Ta was performed to explore the variation in the interaction with the conserved cis-element DNA motif (CATGTG) as both the proteins share the same domain, but there are no in silico studies reported of these proteins. The secondary structure, 3D-modelling of the proteins, DNA-protein docking and dynamics have computed by Schrodinger Prime Suite. Predicted secondary structures were energy minimised using Macromodel and docking was performed based on binding energy and hydrogen bonds. Molecular dynamics simulation of NAMB1-Ta and NAMB1-Td individually and with the cis-element motif, performed for 100 ns, revealed significant variations in the protein-DNA interaction in Ta. This work provides the modelled 3D-interaction profile caused by a single bp frameshift mutation in understanding the difference in function between NAMB1 orthologs due to lack of NAC domain. The overall computational analysis reveals that NAMB1-Ta and NAMB1-Td proteins display a good amount of dissimilarity in their structure, dynamics and DNA-binding characteristics.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas de Plantas , Triticum , DNA , Domesticação , Mutação da Fase de Leitura , Proteínas de Plantas/genética , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...