Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomics ; 24(3-4): e2200431, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37548120

RESUMO

Middle-down proteomics (MDP) is an analytical approach in which protein samples are digested with proteases such as Glu-C to generate large peptides (>3 kDa) that are analyzed by mass spectrometry (MS). This method is useful for characterizing high-molecular-weight proteins that are difficult to detect by top-down proteomics (TDP), in which intact proteins are analyzed by MS. In this study, we applied GeLC-FAIMS-MS, a multidimensional separation workflow that combines gel-based prefractionation with LC-FAIMS MS, for deep MDP. Middle-down peptides generated by optimized limited Glu-C digestion conditions were first size-fractionated by polyacrylamide gel electrophoresis, followed by C4 reversed-phase liquid chromatography separation and additional ion mobility fractionation, resulting in a significant increase in peptide length detectable by MS. In addition to global analysis, the GeLC-FAIMS-MS concept can also be applied to targeted MDP, where only proteins in the desired molecular weight range are gel-fractionated and their Glu-C digestion products are analyzed, as demonstrated by targeted analysis of integrins in exosomes. In-depth MDP achieved by global and targeted GeLC-FAIMS-MS supports the exploration of proteoform information not covered by conventional TDP by increasing the number of detectable protein groups or post-translational modifications (PTMs) and improving the sequence coverage.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Fluxo de Trabalho , Peptídeos/análise , Proteínas de Ligação a DNA
2.
Proteomics ; 24(3-4): e2300068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997224

RESUMO

Top-down proteomics (TDP) directly analyzes intact proteins and thus provides more comprehensive qualitative and quantitative proteoform-level information than conventional bottom-up proteomics (BUP) that relies on digested peptides and protein inference. While significant advancements have been made in TDP in sample preparation, separation, instrumentation, and data analysis, reliable and reproducible data analysis still remains one of the major bottlenecks in TDP. A key step for robust data analysis is the establishment of an objective estimation of proteoform-level false discovery rate (FDR) in proteoform identification. The most widely used FDR estimation scheme is based on the target-decoy approach (TDA), which has primarily been established for BUP. We present evidence that the TDA-based FDR estimation may not work at the proteoform-level due to an overlooked factor, namely the erroneous deconvolution of precursor masses, which leads to incorrect FDR estimation. We argue that the conventional TDA-based FDR in proteoform identification is in fact protein-level FDR rather than proteoform-level FDR unless precursor deconvolution error rate is taken into account. To address this issue, we propose a formula to correct for proteoform-level FDR bias by combining TDA-based FDR and precursor deconvolution error rate.


Assuntos
Peptídeos , Proteômica , Proteínas de Ligação a DNA
3.
Proteomics ; 24(3-4): e2200542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36815320

RESUMO

In top-down (TD) proteomics, efficient proteoform separation is crucial to reduce the sample complexity and increase the depth of the analysis. Here, we developed a two-dimensional low pH/low pH reversed-phase liquid chromatography separation scheme for TD proteomics. The first dimension for offline fractionation was performed using a polymeric reversed-phase (PLRP-S) column with trifluoroacetic acid as ion-pairing reagent. The second dimension, a C4 nanocolumn with formic acid as ion-pairing reagent, was coupled online with a high-field asymmetric ion mobility spectrometry (FAIMS) Orbitrap Tribrid mass spectrometer. For both dimensions several parameters were optimized, such as the adaption of the LC gradients in the second dimension according to the elution time (i.e., fraction number) in the first dimension. Avoidance of elevated temperatures and prolonged exposure to acidic conditions minimized cleavage of acid labile aspartate-proline peptide bonds. Furthermore, a concatenation strategy was developed to reduce the total measurement time. We compared our low/low pH with a previously published high pH (C4, ammonium formate)/low pH strategy and found that both separation strategies led to complementary proteoform identifications, mainly below 20 kDa, with a higher number of proteoforms identified by the low/low pH separation. With the optimized separation scheme, more than 4900 proteoforms from 1250 protein groups were identified in Caco-2 cells.


Assuntos
Cromatografia de Fase Reversa , Proteômica , Humanos , Cromatografia de Fase Reversa/métodos , Proteômica/métodos , Células CACO-2 , Espectrometria de Massa com Cromatografia Líquida , Concentração de Íons de Hidrogênio
4.
Angew Chem Int Ed Engl ; 62(28): e202301969, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37066813

RESUMO

While most nanoproteomics approaches for the analysis of low-input samples are based on bottom-up proteomics workflows, top-down approaches enabling proteoform characterization are still underrepresented. Using mammalian cell proteomes, we established a facile one-pot sample preparation protocol based on protein aggregation on magnetic beads and intact proteoform elution using 40 % formic acid. Performed on a digital microfluidics device, the workflow enabled sensitive analyses of single Caenorhabditis elegans nematodes, thereby increasing the number of proteoform identifications compared to in-tube sample preparation by 46 %. Label-free quantification of single nematodes grown under different conditions allowed to identify changes in the abundance of proteoforms not distinguishable by bottom-up proteomics. The presented workflow will facilitate proteoform-directed analysis on samples of limited availability.


Assuntos
Caenorhabditis elegans , Microfluídica , Animais , Caenorhabditis elegans/metabolismo , Proteoma/análise , Proteômica/métodos , Fenômenos Magnéticos , Mamíferos/metabolismo
5.
iScience ; 26(2): 106069, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36818287

RESUMO

Microproteins and short open reading frame-encoded peptides (SEPs) can, like all proteins, carry numerous posttranslational modifications. Together with posttranscriptional processes, this leads to a high number of possible distinct protein molecules, the proteoforms, out of a limited number of genes. The identification, quantification, and molecular characterization of proteoforms possess special challenges to established, mainly bottom-up proteomics (BUP) based analytical approaches. While BUP methods are powerful, proteins have to be inferred rather than directly identified, which hampers the detection of proteoforms. An alternative approach is top-down proteomics (TDP) which allows to identify intact proteoforms. This perspective article provides a brief overview of modified microproteins and SEPs, introduces the proteoform terminology, and compares present BUP and TDP workflows highlighting their major advantages and caveats. Necessary future developments in TDP to fully accentuate its potential for proteoform-centric analytics of microproteins and SEPs will be discussed.

6.
Anal Chem ; 94(37): 12815-12821, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069571

RESUMO

The combination of liquid chromatography (LC) and gas-phase separation by field-asymmetric ion mobility spectrometry (FAIMS) is a powerful proteoform separation system for top-down proteomics. Here, we present an in-depth top-down proteomics workflow, GeLC-FAIMS-MS, in which a molecular-weight-based proteome fractionation approach using SDS-polyacrylamide gel electrophoresis is performed prior to LC-FAIMS-MS. Since individual bands and their corresponding mass ranges require different compensating voltages (CVs), the MS parameters for each gel band and CV were optimized to increase the number and reliability of proteoform identifications further. We developed an easy-to-implement and inexpensive procedure combining the earlier established Passively Eluting Proteins from Polyacrylamide gels as Intact species (PEPPI) protocol with an optimized Anion-Exchange disk-assisted Sequential sample Preparation (AnExSP) method for the removal of stains and SDS. The protocol was compared with a methanol-chloroform-water (MCW)-based protein precipitation protocol. The results show that the PEPPI-AnExSP procedure is better suited for the identification of low-molecular-weight proteoforms, whereas the MCW-based protocol showed advantages for higher-molecular-weight proteoforms. Moreover, complementary results were observed with the two methods in terms of hydrophobicity and isoelectric points of the identified proteoforms. In total, 8500 proteoforms could be identified in a human proteome standard, showing the effectiveness of the gel-based sample fractionation approaches in combination with LC-FAIMS-MS.


Assuntos
Proteoma , Proteômica , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Mobilidade Iônica , Proteoma/análise , Proteômica/métodos , Reprodutibilidade dos Testes
7.
J Proteome Res ; 21(9): 2185-2196, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35972260

RESUMO

Bottom-up proteomics (BUP)-based N-terminomics techniques have become standard to identify protein N-termini. While these methods rely on the identification of N-terminal peptides only, top-down proteomics (TDP) comes with the promise to provide additional information about post-translational modifications and the respective C-termini. To evaluate the potential of TDP for terminomics, two established TDP workflows were employed for the proteome analysis of the nematode Caenorhabditis elegans. The N-termini of the identified proteoforms were validated using a BUP-based N-terminomics approach. The TDP workflows used here identified 1658 proteoforms, the N-termini of which were verified by BUP in 25% of entities only. Caveats in both the BUP- and TDP-based workflows were shown to contribute to this low overlap. In BUP, the use of trypsin prohibits the detection of arginine-rich or arginine-deficient N-termini, while in TDP, the formation of artificially generated termini was observed in particular in a workflow encompassing sample treatment with high acid concentrations. Furthermore, we demonstrate the applicability of reductive dimethylation in TDP to confirm biological N-termini. Overall, our study shows not only the potential but also current limitations of TDP for terminomics studies and also presents suggestions for future developments, for example, for data quality control, allowing improvement of the detection of protein termini by TDP.


Assuntos
Proteoma , Proteômica , Arginina , Proteínas de Ligação a DNA , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteômica/métodos , Fluxo de Trabalho
8.
Anal Chem ; 94(8): 3600-3607, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35172570

RESUMO

In top-down (TD) proteomics, prefractionation prior to mass spectrometric (MS) analysis is a crucial step for both the high confidence identification of proteoforms and increased proteome coverage. In addition to liquid-phase separations, gas-phase fractionation strategies such as field asymmetric ion mobility spectrometry (FAIMS) have been shown to be highly beneficial in TD proteomics. However, so far, only external compensation voltage (CV) stepping has been demonstrated for TD proteomics, i.e., single CVs were applied for each run. Here, we investigated the use of internal CV stepping (multiple CVs per acquisition) for single-shot TD analysis, which has huge advantages in terms of measurement time and the amount of sample required. In addition, MS parameters were optimized for the individual CVs since different CVs target certain mass ranges. For example, small proteoforms identified mainly with more negative CVs can be identified with lower resolution and number of microscans than larger proteins identified primarily via less negative CVs. We investigated the optimal combination and number of CVs for different gradient lengths and validated the optimized settings with the low-molecular-weight proteome of CaCo-2 cells obtained using a range of different sample preparation techniques. Compared to measurements without FAIMS, both the number of identified protein groups (+60-94%) and proteoforms (+46-127%) and their confidence were significantly increased, while the measurement time remained identical. In total, we identified 684 protein groups and 2675 proteoforms from CaCo-2 cells in less than 24 h using the optimized multi-CV method.


Assuntos
Espectrometria de Mobilidade Iônica , Proteômica , Células CACO-2 , Humanos , Espectrometria de Massas , Proteoma , Proteômica/métodos
9.
J Proteome Res ; 21(1): 20-29, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34818005

RESUMO

Top-down proteomics analyzes intact proteoforms with all of their post-translational modifications and genetic and RNA splice variants. In addition, modifications introduced either deliberately or inadvertently during sample preparation, that is, via oxidation, alkylation, or labeling reagents, or through the formation of noncovalent adducts (e.g., detergents) further increase the sample complexity. To facilitate the recognition of protein modifications introduced during top-down analysis, we developed MSTopDiff, a software tool with a graphical user interface written in Python, which allows one to detect protein modifications by calculating and visualizing mass differences in top-down data without the prerequisite of a database search. We demonstrate the successful application of MSTopDiff for the detection of artifacts originating from oxidation, formylation, overlabeling during isobaric labeling, and adduct formation with cations or sodium dodecyl sulfate. MSTopDiff offers several modes of data representation using deconvoluted MS1 or MS2 spectra. In addition to artificial modifications, the tool enables the visualization of biological modifications such as phosphorylation and acetylation. MSTopDiff provides an overview of the artificial and biological modifications in top-down proteomics samples, which makes it a valuable tool in quality control of standard workflows and for parameter evaluation during method development.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Acetilação , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Software
10.
Proteomics ; 21(23-24): e2100008, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34145981

RESUMO

The recent discovery of alternative open reading frames creates a need for suitable analytical approaches to verify their translation and to characterize the corresponding gene products at the molecular level. As the analysis of small proteins within a background proteome by means of classical bottom-up proteomics is challenging, method development for the analysis of small open reading frame encoded peptides (SEPs) have become a focal point for research. Here, we highlight bottom-up and top-down proteomics approaches established for the analysis of SEPs in both pro- and eukaryotes. Major steps of analysis, including sample preparation and (small) proteome isolation, separation and mass spectrometry, data interpretation and quality control, quantification, the analysis of post-translational modifications, and exploration of functional aspects of the SEPs by means of proteomics technologies are described. These methods do not exclusively cover the analytics of SEPs but simultaneously include the low molecular weight proteome, and moreover, can also be used for the proteome-wide analysis of proteolytic processing events.


Assuntos
Proteoma , Proteômica , Peso Molecular , Fases de Leitura Aberta , Peptídeos/genética
11.
J Proteome Res ; 20(5): 2895-2903, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33760615

RESUMO

The identification of proteins below approximately 70-100 amino acids in bottom-up proteomics is still a challenging task due to the limited number of peptides generated by proteolytic digestion. This includes the short open reading frame-encoded peptides (SEPs), which are a subset of the small proteins that were not previously annotated or that are alternatively encoded. Here, we systematically investigated the use of multiple proteases (trypsin, chymotrypsin, LysC, LysargiNase, and GluC) in GeLC-MS/MS analysis to improve the sequence coverage and the number of identified peptides for small proteins, with a focus on SEPs, in the archaeon Methanosarcina mazei. Combining the data of all proteases, we identified 63 small proteins and additional 28 SEPs with at least two unique peptides, while only 55 small proteins and 22 SEP could be identified using trypsin only. For 27 small proteins and 12 SEPs, a complete sequence coverage was achieved. Moreover, for five SEPs, incorrectly predicted translation start points or potential in vivo proteolytic processing were identified, confirming the data of a previous top-down proteomics study of this organism. The results show clearly that a multi-protease approach allows to improve the identification and molecular characterization of small proteins and SEPs. LC-MS data: ProteomeXchange PXD023921.


Assuntos
Peptídeo Hidrolases , Espectrometria de Massas em Tandem , Fases de Leitura Aberta , Peptídeos/genética , Proteínas
12.
J Proteomics ; 230: 103988, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32949814

RESUMO

Short open reading frame-encoded peptides (SEP) represent a widely undiscovered part of the proteome. The detailed analysis of SEP has, despite inherent limitations such as incomplete sequence coverage, challenges encountered with protein inference, the identification of posttranslational modifications and the assignment of potential N- and C-terminal truncations, predominantly been assessed using bottom-up proteomic workflows. The use of top-down based proteomic workflows is capable of providing an unparalleled level of characterization information, which is of increased importance in the case of alternatively encoded protein products. However, top-down based analysis is not without its own limitations, for which efficient separation prior to MS analysis is a major issue. We established a sample preparation approach for the combined bottom-up and top-down proteomic analysis of SEP. Key improvements were made by the application of solid phase extraction (SPE), which supported enrichment of proteins below ca. 20 kDa, followed by 2D-LC-MS top-down analysis encompassing both HCD and EThcD ion activation. Bottom-up experiments were used to support and confirm top-down data interpretation. This strategy allowed for the top-down characterization of 36 proteoforms mapping to 12 SEP from the archaeon Methanosarcina mazei strain Gö1, with the concurrent detection and identification of several posttranslational modifications in SEP. BIOLOGICAL SIGNIFICANCE: Small or short open reading frames (sORF) have been widely neglected in genome research in the past. With their increasing discovery, the question about the presence and molecular function of their translation products, the short open reading frame-encoded peptides (SEP), arises. As these small proteins are usually below the 10 kDa range, the number of peptides identifiable by bottom-up proteomics is limited which hampers both the identification and the recognition of potential posttranslational modifications. The presented top-down approach allowed for the detection of full length SEP, as well as of terminally truncated proteoforms, and further enabled the identification of disulfide bonds in these small proteins. This demonstrates, that this yet widely undiscovered part of the proteome undergoes the same modifications as classical proteins which is an essential step for future understanding of the biological functions of these molecules.


Assuntos
Proteoma , Proteômica , Peso Molecular , Fases de Leitura Aberta , Peptídeos/genética
13.
Proteomics ; 20(19-20): e2000084, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32667133

RESUMO

Short open reading frame-encoded peptides (SEP) have been identified across all domains of life and are predicted to be involved in many biochemical processes, however, for the vast majority of SEP their biological function is still unknown. Optimized methodologies have to be used for the mass spectrometric analysis of SEP, because traditional methods of bottom-up proteomics show a bias against small proteins. Here, different staining methods for SDS-PAGE gels prior in-gel digestion following LC-MS/MS analysis for the identification of SEP in the archaeon Methanosarcina mazei are investigated. In total, 45 SEP with at least one high confidence (FDR <1%) unique peptide and five consecutive b- or y-ions in the MS2 spectrum are identified. The staining methods provide complementary data. The highest number of SEP are identified in the samples stained with Coomassie brilliant blue. However, the highest quality of the identified SEP is achieved in the samples without staining. These comprehensive data sets demonstrate that in-gel digestion is well suited for the identification of SEP.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Géis , Fases de Leitura Aberta , Peptídeos/genética , Coloração e Rotulagem
14.
J Proteome Res ; 18(4): 1725-1734, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30779583

RESUMO

The identification of small proteins and peptides (below ca. 100-150 amino acids) in complex biological samples is hampered by the dominance of higher-molecular-weight proteins. On the contrary, the increasing knowledge about alternative or short open reading frames creates a need for methods that allow the existence of the corresponding gene products to be proven in proteomics experiments. We present an acetonitrile-based precipitation methodology that depletes the majority of proteins above ca. 15 kDa. Parameters such as depletion mixture composition, pH, and temperature were optimized using a model protein mixture, and the method was evaluated in comparison with the established differential solubility method. The approach was applied to the analysis of the low-molecular-weight proteome of the archaea Methanosarcina mazei by means of LC-MS. The data clearly show a beneficial effect from a reduction of complexity, especially in terms of the quality of MS/MS-based identification of small proteins. This fast, detergent-free method allowed for, with minimal sample manipulation, the successful identification of several not yet identified short open reading frame encoded peptides in M. mazei.


Assuntos
Peptídeos , Proteoma/análise , Proteômica/métodos , Acetonitrilas/química , Proteínas Arqueais/análise , Proteínas Arqueais/química , Cromatografia Líquida , Methanosarcina/química , Fases de Leitura Aberta , Peptídeos/análise , Peptídeos/química , Peptídeos/isolamento & purificação , Proteoma/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...