Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(2): e0189823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38259065

RESUMO

Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, ß-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced ß-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced ß-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger ß-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences ß-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (ß-1,3-glucan) at its cell surface. Most of the ß-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some ß-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases ß-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to ß-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in ß-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates ß-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.


Assuntos
Candida albicans , Glucanos , beta-Glucanas , Humanos , Candida albicans/metabolismo , Glucanos/metabolismo , Dióxido de Carbono/metabolismo , Moléculas com Motivos Associados a Patógenos , Hipóxia/metabolismo , Lactatos/metabolismo , Parede Celular/metabolismo
2.
PLoS Pathog ; 17(10): e1010037, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710198

RESUMO

The opportunistic pathogen Candida glabrata is the second most frequent causative agent of vulvovaginal candidiasis (VVC), a disease that affects 70-75% of women at least once during their life. However, C. glabrata is almost avirulent in mice and normally incapable of inflicting damage to vaginal epithelial cells in vitro. We thus proposed that host factors present in vivo may influence C. glabrata pathogenicity. We, therefore, analyzed the impact of albumin, one of the most abundant proteins of the vaginal fluid. The presence of human, but not murine, albumin dramatically increased the potential of C. glabrata to damage vaginal epithelial cells. This effect depended on macropinocytosis-mediated epithelial uptake of albumin and subsequent proteolytic processing. The enhanced pathogenicity of C. glabrata can be explained by a combination of beneficial effects for the fungus, which includes an increased access to iron, accelerated growth, and increased adhesion. Screening of C. glabrata deletion mutants revealed that Hap5, a key regulator of iron homeostasis, is essential for the albumin-augmented damage potential. The albumin-augmented pathogenicity was reversed by the addition of iron chelators and a similar increase in pathogenicity was shown by increasing the iron availability, confirming a key role of iron. Accelerated growth not only led to higher cell numbers, but also to increased fungal metabolic activity and oxidative stress resistance. Finally, the albumin-driven enhanced damage potential was associated with the expression of distinct C. glabrata virulence genes. Transcriptional responses of the epithelial cells suggested an unfolded protein response (UPR) and ER-stress responses combined with glucose starvation induced by fast growing C. glabrata cells as potential mechanisms by which cytotoxicity is mediated.Collectively, we demonstrate that albumin augments the pathogenic potential of C. glabrata during interaction with vaginal epithelial cells. This suggests a role for albumin as a key player in the pathogenesis of VVC.


Assuntos
Albuminas/metabolismo , Candida glabrata/patogenicidade , Candidíase Vulvovaginal/microbiologia , Células Epiteliais/microbiologia , Animais , Feminino , Humanos , Camundongos
3.
FEMS Microbiol Rev ; 45(3)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33232448

RESUMO

Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.


Assuntos
Candidíase/imunologia , Candidíase/microbiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Interações Microbianas/fisiologia , Candida albicans/imunologia , Candida albicans/patogenicidade , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...