Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7748, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173349

RESUMO

Prenatal experiences can influence offspring physiology and behaviour through the lifespan. Various forms of prenatal stress impair adult learning and memory function and can lead to increased occurrence of anxiety and depression. Clinical work suggests that prenatal stress and maternal depression lead to similar outcomes in children and adolescents, however the long-term effects of maternal depression are less established, particularly in well controlled animal models. Social isolation is common in depressed individuals and during the recent COVID-19 pandemic. Accordingly, for this study we were interested in the effects of maternal stress induced via social isolation on adult offspring cognitive functions including spatial, stimulus-response, and emotional learning and memory that are mediated by different networks centered on the hippocampus, dorsal striatum, and amygdala, respectively. Tasks included a discriminative contextual fear conditioning task and cue-place water task. Pregnant dams in the social isolation group were single housed prior to and throughout gestation. Once offspring reached adulthood the male offspring were trained on a contextual fear conditioning task in which rats were trained to associate one of two contexts with an aversive stimulus and the opposing context remained neutral. Afterwards a cue-place water task was performed during which they were required to navigate to both a visible and invisible platform. Fear conditioning results revealed that the adult offspring of socially isolated mothers, but not controls, were impaired in associating a specific context with a fear-inducing stimulus as assessed by conditioned freezing and avoidance. Results from the water task indicate that adult offspring of mothers that were socially isolated showed place learning deficits but not stimulus-response habit learning on the same task. These cognitive impairments, in the offspring of socially isolated dams, occurred in the absence of maternal elevated stress hormone levels, anxiety, or altered mothering. Some evidence suggested that maternal blood-glucose levels were altered particularly during gestation. Our results provide further support for the idea that learning and memory networks, centered on the amygdala and hippocampus are particularly susceptible to the negative impacts of maternal social isolation and these effects can occur without elevated glucocorticoid levels associated with other forms of prenatal stress.


Assuntos
COVID-19 , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Ratos , Masculino , Humanos , Animais , Roedores , Filhos Adultos , Pandemias , Cognição , Isolamento Social
2.
J Neurophysiol ; 119(3): 1095-1112, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212917

RESUMO

Training locomotor central pattern-generating networks (CPGs) through arm and leg cycling improves walking in chronic stroke. These outcomes are presumed to result from enhanced interlimb connectivity and CPG function. The extent to which rhythmic arm training activates interlimb CPG networks for locomotion remains unclear and was assessed by studying chronic stroke participants before and after 5 wk of arm cycling training. Strength was assessed bilaterally via maximal voluntary isometric contractions in the legs and hands. Muscle activation during arm cycling and transfer to treadmill walking were assessed in the more affected (MA) and less affected (LA) sides via surface electromyography. Changes to interlimb coupling during rhythmic movement were evaluated using modulation of cutaneous reflexes elicited by electrical stimulation of the superficial radial nerve at the wrist. Bilateral soleus stretch reflexes were elicited at rest and during 1-Hz arm cycling. Clinical function tests assessed walking, balance, and motor function. Results show significant changes in function and neurophysiological integrity. Training increased bilateral grip strength, force during MA plantarflexion, and muscle activation. "Normalization" of cutaneous reflex modulation was found during arm cycling. There was enhanced activity in the dorsiflexor muscles on the MA side during the swing phase of walking. Enhanced interlimb coupling was shown by increased modulation of MA soleus stretch reflex amplitudes during arm cycling after training. Clinical evaluations showed enhanced walking ability and balance. These results are consistent with training-induced changes in CPG function and interlimb connectivity and underscore the need for arm training in the functional rehabilitation of walking after neurotrauma. NEW & NOTEWORTHY It has been suggested but not tested that training the arms may influence rehabilitation of walking due to activation of interneuronal patterning networks after stroke. We show that arm cycling training improves strength, clinical function, coordination of muscle activity during walking, and neurological connectivity between the arms and the legs. The arms can, in fact, give the legs a helping hand in rehabilitation of walking after stroke.


Assuntos
Braço/fisiopatologia , Técnicas de Exercício e de Movimento , Perna (Membro)/fisiopatologia , Reflexo de Estiramento , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Caminhada , Idoso , Idoso de 80 Anos ou mais , Geradores de Padrão Central , Eletromiografia , Força da Mão , Humanos , Contração Isométrica , Pessoa de Meia-Idade , Atividade Motora , Músculo Esquelético/fisiologia
3.
Med Sci Sports Exerc ; 49(12): 2439-2450, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29135783

RESUMO

INTRODUCTION: Sensory feedback from the foot dorsum during walking has only been studied globally by whole nerve stimulation. Stimulating the main nerve innervating the dorsal surface produces a functional stumble corrective response that is phase-dependently modulated. We speculated that effects evoked by activation of discrete skin regions on the foot dorsum would be topographically organized, as with the foot sole. METHODS: Nonnoxious electrical stimulation was delivered to five discrete locations on the dorsal surface of the foot during treadmill walking. Muscle activity from muscles acting at the ankle, knee, hip, and shoulder were recorded along with ankle, knee, and hip kinematics and kinetic information from forces under the foot. All data were sorted on the basis of stimulus occurrence in 12 step cycle phases, before being averaged together within a phase for subsequent analysis. RESULTS: Results reveal dynamic changes in reflex amplitudes and kinematics that are site specific and phase dependent. Most responses from discrete sites on the foot dorsum were seen in the swing phase suggesting function to conform foot trajectory to maintain stability of the moving limb. In general, responses from lateral stimulation differed from medial stimulation, and effects were largest from stimulation at the distal end of the foot at the metatarsals; that is, in anatomical locations where actual impact with an object in the environment is most likely during swing. Responses to stimulation extend to include muscles at the hip and shoulder. CONCLUSIONS: We reveal that afferent feedback from specific cutaneous locations on the foot dorsum influences stance and swing phase corrective responses. This emphasizes the critical importance of feedback from the entire foot surface in locomotor control and has application for rehabilitation after neurological injury and in footwear development.


Assuntos
Pé/fisiologia , Marcha/fisiologia , Reflexo/fisiologia , Fenômenos Fisiológicos da Pele , Caminhada/fisiologia , Tornozelo , Fenômenos Biomecânicos , Estimulação Elétrica , Eletromiografia , Feminino , Quadril , Humanos , Joelho , Masculino , Ombro , Adulto Jovem
4.
Brain Sci ; 6(4)2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27827888

RESUMO

Neural connections remain partially viable after stroke, and access to these residual connections provides a substrate for training-induced plasticity. The objective of this project was to test if reflex excitability could be modified with arm and leg (A & L) cycling training. Nineteen individuals with chronic stroke (more than six months postlesion) performed 30 min of A & L cycling training three times a week for five weeks. Changes in reflex excitability were inferred from modulation of cutaneous and stretch reflexes. A multiple baseline (three pretests) within-subject control design was used. Plasticity in reflex excitability was determined as an increase in the conditioning effect of arm cycling on soleus stretch reflex amplitude on the more affected side, by the index of modulation, and by the modulation ratio between sides for cutaneous reflexes. In general, A & L cycling training induces plasticity and modifies reflex excitability after stroke.

5.
Neural Plast ; 2016: 1517968, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27403344

RESUMO

Rhythmic arm and leg (A&L) movements share common elements of neural control. The extent to which A&L cycling training can lead to training adaptations which transfer to improved walking function remains untested. The purpose of this study was to test the efficacy of A&L cycling training as a modality to improve locomotor function after stroke. Nineteen chronic stroke (>six months) participants were recruited and performed 30 minutes of A&L cycling training three times a week for five weeks. Changes in walking function were assessed with (1) clinical tests; (2) strength during isometric contractions; and (3) treadmill walking performance and cutaneous reflex modulation. A multiple baseline (3 pretests) within-subject control design was used. Data show that A&L cycling training improved clinical walking status increased strength by ~25%, improved modulation of muscle activity by ~25%, increased range of motion by ~20%, decreased stride duration, increased frequency, and improved modulation of cutaneous reflexes during treadmill walking. On most variables, the majority of participants showed a significant improvement in walking ability. These results suggest that exploiting arm and leg connections with A&L cycling training, an accessible and cost-effective training modality, could be used to improve walking ability after stroke.


Assuntos
Braço/fisiologia , Perna (Membro)/fisiologia , Movimento/fisiologia , Reflexo/fisiologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Caminhada/fisiologia , Idoso , Idoso de 80 Anos ou mais , Braço/inervação , Estimulação Elétrica/métodos , Eletromiografia/métodos , Teste de Esforço/psicologia , Feminino , Humanos , Perna (Membro)/inervação , Masculino , Pessoa de Meia-Idade
6.
Exp Brain Res ; 234(11): 3059-3081, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27421291

RESUMO

During bipedal locomotor activities, humans use elements of quadrupedal neuronal limb control. Evolutionary constraints can help inform the historical ancestry for preservation of these core control elements support transfer of the huge body of quadrupedal non-human animal literature to human rehabilitation. In particular, this has translational applications for neurological rehabilitation after neurotrauma where interlimb coordination is lost or compromised. The present state of the field supports including arm activity in addition to leg activity as a component of gait retraining after neurotrauma.


Assuntos
Evolução Biológica , Extremidades/fisiologia , Transtornos Neurológicos da Marcha/reabilitação , Locomoção/fisiologia , Pesquisa Translacional Biomédica , Animais , Encefalopatias/complicações , Encefalopatias/metabolismo , Transtornos Neurológicos da Marcha/etiologia , Humanos
7.
Artigo em Inglês | MEDLINE | ID: mdl-25565995

RESUMO

The basic pattern of arm and leg movement during rhythmic locomotor tasks is supported by common central neural control from spinal and supraspinal centers in neurologically intact participants. The purpose of this study was to test the hypothesis that following a cerebrovascular accident, shared systems from interlimb cutaneous networks facilitating arm and leg coordination persist across locomotor tasks. Twelve stroke participants (>6 months post CVA) performed arm and leg (A&L) cycling using a stationary ergometer and walking on a motorized treadmill. In both tasks cutaneous reflexes were evoked via surface stimulation of the nerves innervating the dorsum of the hand (superficial radial; SR) and foot (superficial peroneal; SP) of the less affected limbs. Electromyographic (EMG) activity from the tibialis anterior, soleus, flexor carpi radialis, and posterior deltoid were recorded bilaterally with surface electrodes. Full-wave rectified and filtered EMG data were separated into eight equal parts or phases and aligned to begin with maximum knee extension for both walking and A&L cycling. At each phase of movement, background EMG data were quantified as the peak normalized response for each participant and cutaneous reflexes were quantified as the average cumulative reflex over 150 ms following stimulation. In general, background EMG was similar between walking and A&L cycling, seen especially in the distal leg muscles. Cutaneous reflexes were evident and modified in the less and more affected limbs during walking and A&L cycling and similar modulation patterns were observed suggesting activity in related control networks between tasks. After a stroke common neural patterning from conserved subcortical regulation is seen supporting the notion of a common core in locomotor tasks involving arm and leg movement. This has translational implications for rehabilitation where A&L cycling could be usefully applied to improve walking function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...