Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(13): 1815-1826, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38905497

RESUMO

ConspectusKohn-Sham density functional theory (KS DFT) is arguably the most widely applied electronic-structure method with tens of thousands of publications each year in a wide variety of fields. Its importance and usefulness can thus hardly be overstated. The central quantity that determines the accuracy of KS DFT calculations is the exchange-correlation functional. Its exact form is unknown, or better "unknowable", and therefore the derivation of ever more accurate yet efficiently applicable approximate functionals is the "holy grail" in the field. In this context, the simultaneous minimization of so-called delocalization errors and static correlation errors is the greatest challenge that needs to be overcome as we move toward more accurate yet computationally efficient methods. In many cases, an improvement on one of these two aspects (also often termed fractional-charge and fractional-spin errors, respectively) generates a deterioration in the other one. Here we report on recent notable progress in escaping this so-called "zero-sum-game" by constructing new functionals based on the exact-exchange energy density. In particular, local hybrid and range-separated local hybrid functionals are discussed that incorporate additional terms that deal with static correlation as well as with delocalization errors. Taking hints from other coordinate-space models of nondynamical and strong electron correlations (the B13 and KP16/B13 models), position-dependent functions that cover these aspects in real space have been devised and incorporated into the local-mixing functions determining the position-dependence of exact-exchange admixture of local hybrids as well as into the treatment of range separation in range-separated local hybrids. While initial functionals followed closely the B13 and KP16/B13 frameworks, meanwhile simpler real-space functions based on ratios of semilocal and exact-exchange energy densities have been found, providing a basis for relatively simple and numerically convenient functionals. Notably, the correction terms can either increase or decrease exact-exchange admixture locally in real space (and in interelectronic-distance space), leading even to regions with negative admixture in cases of particularly strong static correlations. Efficient implementations into a fast computer code (Turbomole) using seminumerical integration techniques make such local hybrid and range-separated local hybrid functionals promising new tools for complicated composite systems in many research areas, where simultaneously small delocalization errors and static correlation errors are crucial. First real-world application examples of the new functionals are provided, including stretched bonds, symmetry-breaking and hyperfine coupling in open-shell transition-metal complexes, as well as a reduction of static correlation errors in the computation of nuclear shieldings and magnetizabilities. The newest versions of range-separated local hybrids (e.g., ωLH23tdE) retain the excellent frontier-orbital energies and correct asymptotic exchange-correlation potential of the underlying ωLH22t functional while improving substantially on strong-correlation cases. The form of these functionals can be further linked to the performance of the recent impactful deep-neural-network "black-box" functional DM21, which itself may be viewed as a range-separated local hybrid.

2.
Inorg Chem ; 63(16): 7286-7292, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38592208

RESUMO

The perfluorinated silylphosphinidene, F3SiP, in the triplet ground state is generated by the reaction of laser-ablated silicon atoms with PF3 in solid neon and argon matrices. The reactions proceed with the initial formation of a silicon trifluorophosphine complex, F3PSi, in the triplet ground state, and a more stable inserted phosphasilene, FPSiF2, in the singlet ground state upon deposition. The trifluorosilylphosphinidene was formed through F-migration reactions of FPSiF2 and F3PSi following a two-state mechanism under irradiation with visible light (λ = 470 nm) and full arc light (λ > 220 nm), respectively. High-level quantum-chemical methods support the identification of F3PSi, FPSiF2, and F3SiP by matrix-isolation IR spectroscopy.

3.
Chemistry ; 30(34): e202401015, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38618887

RESUMO

The molecular IrF5 -, IrF6 - anions and M[IrF6] (M=Na, K, Rb, Cs) ion pairs were prepared by co-deposition of laser-ablated alkali metal fluorides MF with IrF6 and isolated in solid neon or argon matrices under cryogenic conditions. The free anions were obtained as well by co-deposition of IrF6 with laser-ablated metals (Ir or Pt) as electron sources. The products were characterized in a combined analysis of matrix IR spectroscopy and electronic structure calculations using two-component quasi-relativistic DFT methods accounting for spin-orbit coupling (SOC) effects as well as multi-reference configuration-interaction (MRCI) approaches with SOC. Inclusion of SOC is crucial in the prediction of spectra and properties of IrF6 - and its alkali-metal ion pairs. The observed IR bands and the computations show that the IrF6 - anion adopts an Oh structure in a nondegenerate ground state stabilized by SOC effects, and not a distorted D4h structure in a triplet ground state as suggested by scalar-relativistic calculations. The corresponding "closed-shell" M[IrF6] ion pairs with C3v symmetry are stabilized by coordination of an alkali metal ion to three F atoms, and their structural change in the series from M=Na to Cs was proven spectroscopically. There is no evidence for the formation of IrF7, IrF7 - or M[IrF7] (M=Na, K, Rb, Cs) ion pairs in our experiments.

4.
J Phys Chem A ; 128(11): 2253-2271, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38456430

RESUMO

Local hybrid functionals containing strong-correlation factors (scLHs) and range-separated local hybrids (RSLHs) have been integrated into an efficient coupled-perturbed Kohn-Sham implementation for the calculation of nuclear shielding constants. Several scLHs and the ωLH22t RSLH have then been evaluated for the first time for the extended NS372 benchmark set of main-group shieldings and shifts and the TM70 benchmark of 3d transition-metal shifts. The effects of the strong-correlation corrections have been analyzed with respect to the spatial distribution of the sc-factors, which locally diminish exact-exchange admixture at certain regions in a molecule. The scLH22t, scLH23t-mBR, and scLH23t-mBR-P functionals, which contain a "damped" strong-correlation factor to retain the excellent performance of the underlying LH20t functional for weakly correlated situations, tend to make smaller corrections to shieldings and shifts than the "undamped" scLH22ta functional. While the latter functional can also deteriorate agreement with the reference data in certain weakly correlated cases, it provides overall better performance, in particular for systems where static correlation is appreciable. This pertains only to a minority of systems in the NS372 main-group test set but to many more systems in the TM70 transition-metal test set, in particular for high-oxidation-state complexes, e.g., Cr(+VI) complexes and other systems with stretched bonds. Another undamped scLH, the simpler LDA-based scLH21ct-SVWN-m, also tends to provide significant improvements in many cases. The differences between the functionals and species can be rationalized on the basis of one-dimensional plots of the strong-correlation factors, augmented by isosurface plots of the fractional orbital density (FOD). Position-dependent exact-exchange admixture is thus shown to provide substantial flexibility in treating response properties like NMR shifts for both weakly and strongly correlated systems.

5.
Chem Sci ; 15(8): 2990-2995, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404370

RESUMO

The electron withdrawing and oxidatively stable perfluorinated Cp* ligand [C5(CF3)5]- allowed for the isolation of rare and unusually stable coinage metal complexes [M(C5(CF3)5)(PtBu3)] (M = Cu, Ag, Au), representing the first complete and structurally comparable series of group 11 Cp coordination compounds. Full characterization and structure analysis revealed distinct and partly unknown coordination motifs with hapticities ranging from η1, η3/η1 and η3/η2 for gold, silver and copper, respectively. Quantum-chemical studies using DFT methods confirm these findings and connect them to the unique electronic structure of the given ligand system.

6.
J Chem Theory Comput ; 20(5): 2033-2048, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38411554

RESUMO

A small set of mononuclear manganese complexes evaluated previously for their Mn hyperfine couplings (HFCs) has been analyzed using density functionals based on the exact-exchange energy density─in particular, the spin symmetry breaking (SSB) found previously when using hybrid functionals. Employing various strong-correlation corrected local hybrids (scLHs) and strong-correlation corrected range-separated local hybrids (scRSLHs) with or without additional corrections to their local mixing functions (LMFs) to mitigate delocalization errors (DE), the SSB and the associated dipolar HFCs of [Mn(CN)4]2-, MnO3, [Mn(CN)4N]-, and [Mn(CN)5NO]2- (the latter with cluster embedding) have been examined. Both strong-correlation (sc)-correction and DE-correction terms help to diminish SSB and correct the dipolar HFCs. The DE corrections are more effective, and the effects of the sc corrections depend on their damping factors. Interestingly, the DE-corrections reduce valence-shell spin polarization (VSSP) and thus SSB by locally enhancing exact-exchange (EXX) admixture near the metal center and thereby diminishing spin-density delocalization onto the ligand atoms. In contrast, sc corrections diminish EXX admixture locally, mostly on specific ligand atoms. This then reduces VSSP and SSB as well. The performance of scLHs and scRSLHs for the isotropic Mn HFCs has also been analyzed, with particular attention to core-shell spin-polarization contributions. Further sc-corrected functionals, such as the KP16/B13 construction and the DM21 deep-neural-network functional, have been examined.

7.
Nat Commun ; 15(1): 293, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177143

RESUMO

A previous controversial discussion regarding the interpretation of Rydberg spectra of gaseous dimethylpiperazine (DMP) as showing the co-existence of a localized and delocalized mixed-valent DMP+ radical cation is revisited. Here we show by high-level quantum-chemical calculations that an apparent barrier separating localized and delocalized DMP+ minima in previous multi-reference configuration-interaction (MRCI) calculations and in some other previous computations were due to unphysical curve crossings of the reference wave functions. These discontinuities on the surface are removed in state-averaged MRCI calculations and with some other, orthogonal high-level approaches, which do not provide a barrier and thus no localized minimum. We then proceed to show that in the actually observed Rydberg state of neutral DMP the 3s-type Rydberg electron binds more strongly to a localized positive charge distribution, generating a localized DMP* Rydberg-state minimum, which is absent for the DMP+ cation. This work presents a case where interactions of a Rydberg electron with the underlying cationic core alter molecular structure in a fundamental way.

8.
Chemistry ; 30(19): e202303782, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38293898

RESUMO

The study focuses on the structural and photophysical characteristics of neutral and oxidized forms of N-tolanyl-phenochalcogenazines PZX-tolan with X=O, S, Se, and Te. X-ray crystal structure analyses show a pseudo-equatorial (pe) structure of the tolan substituent in the O, S, and Se dyads, while the Te dyad possesses a pseudo-axial (pa) structure. DFT calculations suggest the pe structure for O and S, and the pa structure for Se and Te as stable forms. Steady-state and femtosecond-time resolved optical spectroscopy in toluene solution indicate that the O and S dyads emit from a CT state, whereas the Se and Te dyads emit from a tolan-localized state. The T1 state is tolan-localized in all cases, showing phosphorescence at 77 K. The heavy atom effect of chalcogens induces intersystem crossing from S1 to Tx, resulting in a decreasing S1 lifetime from 2.1 ns to 0.42 ps. The T1 states possess potential for singlet oxygen sensitization with a high quantum yield (ca. 40 %) for the O, S, and Se dyads. Radical cations exhibit spin density primarily localized at the heterocycle. EPR measurements and quasirelativistic DFT calculations reveal a very strong g-tensor anisotropy, supporting the pe structure for the S and Se derivatives.

9.
Chemistry ; 30(18): e202303112, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38258932

RESUMO

Nickel complexes with a two-electron reduced CO2 ligand (CO2 2-, "carbonite") are investigated with regard to the influence alkali metal (AM) ions have as Lewis acids on the activation of the CO2 entity. For this purpose complexes with NiII(CO2)AM (AM=Li, Na, K) moieties were accessed via deprotonation of nickel-formate compounds with (AM)N(iPr)2. It was found that not only the nature of the AM ions in vicinity to CO2 affect the activation, but also the number and the ligation of a given AM. To this end the effects of added (AM)N(R)2, THF, open and closed polyethers as well as cryptands were systematically studied. In 14 cases the products were characterized by X-ray diffraction and correlations with the situation in solution were made. The more the AM ions get detached from the carbonite ligand, the lower is the degree of aggregation. At the same time the extent of CO2 activation is decreased as indicated by the structural and spectroscopic analysis and reactivity studies. Accompanying DFT studies showed that the coordinating AM Lewis acidic fragment withdraws only a small amount of charge from the carbonite moiety, but it also affects the internal charge equilibration between the LtBuNi and carbonite moieties.

10.
J Phys Chem A ; 127(51): 10896-10907, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38100678

RESUMO

In a recent study [J. Chem. Theory Comput. 2021, 17, 1457-1468], some of us examined the accuracy of magnetizabilities calculated with density functionals representing the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA (mGGA), as well as global hybrid (GH) and range-separated (RS) hybrid functionals by assessment against accurate reference values obtained with coupled-cluster theory with singles, doubles, and perturbative triples [CCSD(T)]. Our study was later extended to local hybrid (LH) functionals by Holzer et al. [J. Chem. Theory Comput. 2021, 17, 2928-2947]; in this work, we examine a larger selection of LH functionals, also including range-separated LH (RSLH) functionals and strong-correlation LH (scLH) functionals. Holzer et al. also studied the importance of the physically correct handling of the magnetic gauge dependence of the kinetic energy density (τ) in mGGA calculations by comparing the Maximoff-Scuseria formulation of τ used in our aforementioned study to the more physical current-density extension derived by Dobson. In this work, we also revisit this comparison with a larger selection of mGGA functionals. We find that the newly tested LH, RSLH, and scLH functionals outperform all of the functionals considered in the previous studies. The various LH functionals afford the seven lowest mean absolute errors while also showing remarkably small standard deviations and mean errors. Most strikingly, the best two functionals are scLHs that also perform remarkably well in cases with significant multiconfigurational character, such as the ozone molecule, which is traditionally excluded from statistical error evaluations due to its large errors with common density functionals.

11.
J Chem Theory Comput ; 19(23): 8639-8653, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37972297

RESUMO

Extending recent developments on strong-correlation (sc) corrections to local hybrid functionals to the recent accurate ωLH22t range-separated local hybrid, a series of highly flexible strong-correlation-corrected range-separated local hybrids (scRSLHs) has been constructed and evaluated. This has required the position-dependent reduction of both short- and long-range exact-exchange admixtures in regions of space characterized by strong static correlations. Using damping procedures provides scRSLHs that retain largely the excellent performance of ωLH22t for weakly correlated situations and, in particular, for accurate quasiparticle energies of a wide variety of systems while reducing dramatically static-correlation errors, e.g., in stretched-bond situations. An additional correction to the local mixing function to reduce delocalization errors in abnormal open-shell situations provides further improvements in thermochemical and kinetic parameters, making scRSLH functionals such as ωLH23tdE or ωLH23tdP promising tools for complex molecular or condensed-phase systems, where low fractional-charge and fractional-spin errors are simultaneously important. The proposed rung 4 functionals thereby largely escape the usual zero-sum game between these two quantities and are expected to open new areas of accurate computations by Kohn-Sham DFT. At the same time, they require essentially no extra computational effort over the underlying ωLH22t functional, which means that their use is only moderately more demanding than that of global, local, or range-separated hybrid functionals.

12.
J Comput Chem ; 44(32): 2461-2477, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37635647

RESUMO

In local hybrid functionals (LHs), a local mixing function (LMF) determines the position-dependent exact-exchange admixture. We report new LHs that focus on an improvement of the LMF in the core region while retaining or partly improving upon the high accuracy in the valence region exhibited by the LH20t functional. The suggested new pt-LMFs are based on a Padé form and modify the previously used ratio between von Weizsäcker and Kohn-Sham local kinetic energies by different powers of the density to enable flexibly improved approximations to the correct high-density and iso-orbital limits relevant for the innermost core region. Using TDDFT calculations for a set of K-shell core excitations of second- and third-period systems including accurate state-of-the-art relativistic orbital corrections, the core part of the LMF is optimized, while the valence part is optimized as previously reported for test sets of atomization energies and reaction barriers (Haasler et al., J Chem Theory Comput 2020, 16, 5645). The LHs are completed by a calibration function that minimizes spurious nondynamical correlation effects caused by the gauge ambiguities of exchange-energy densities, as well as by B95c meta-GGA correlation. The resulting LH23pt functional relates to the previous LH20t functional but specifically improves upon the core region.

13.
J Chem Theory Comput ; 19(20): 6859-6890, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37382508

RESUMO

TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.

14.
Chemistry ; 29(58): e202301556, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37341145

RESUMO

A N-heterocyclic deoxyfluorinating agent SIMesF2 was synthesized by nucleophilic fluorination of N,N-1,3-dimesityl-2-chloroimidazolidinium chloride (3) at room temperature. SIMesF2 was applied to deoxyfluorinate carboxylic acids and alcohols and convert benzaldehyde into difluorotoluene. Mechanistic studies by NMR spectroscopy suggest reaction pathways of the carboxylic acid to acyl fluoride via outer-sphere fluorinations at an imidazolidinium ion by polyfluoride. DFT studies give further insight by exploring mechanistic details which distinguish the fluorination of aldehydes from that of carboxylic acids. Furthermore, a consecutive reaction sequence for the oxidation of an aldehyde followed by in situ fluorination of the generated carboxylic acid was developed.

15.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37387453

RESUMO

Recent work on incorporating strong-correlation (sc) corrections into the scLH22t local hybrid functional [A. Wodynski and M. Kaupp, J. Chem. Theory Comput. 18, 6111-6123 (2022)] used a hybrid procedure, applying a strong-correlation factor derived from the reverse Becke-Roussel machinery of the KP16/B13 and B13 functionals to the nonlocal correlation term of a local hybrid functional. Here, we show that adiabatic-connection factors for strong-correlation-corrected local hybrids (scLHs) can be constructed in a simplified way based on a comparison of semi-local and exact exchange-energy densities only, without recourse to exchange-hole normalization. The simplified procedure is based on a comparative analysis of Becke's B05 real-space treatment of nondynamical correlation and that in LHs, and it allows us to use, in principle, any semi-local exchange-energy density in the variable used to construct local adiabatic connections. The derivation of competitive scLHs is demonstrated based on either a modified Becke-Roussel or a simpler Perdew-Burke-Ernzerhof (PBE) energy density, leading to the scLH23t-mBR and scLH23t-tPBE functionals, which both exhibit low fractional spin errors while retaining good performance for weakly correlated situations. We also report preliminary attempts toward more detailed modeling of the local adiabatic connection, allowing a reduction of unphysical local maxima in spin-restricted bond-dissociation energy curves (scLH23t-mBR-P form). The simplified derivations of sc-factors reported here provide a basis for future constructions and straightforward implementation of exchange-correlation functionals that escape the zero-sum game between low self-interaction and static-correlation errors.

16.
J Chem Theory Comput ; 19(11): 3146-3158, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37204113

RESUMO

The optimal tuning (OT) of range-separated hybrid (RSH) functionals has been proposed as the currently most accurate DFT-based way to compute the relevant quantities required for charge-transfer processes in organic chromophores used in organic photovoltaics and related fields. The main drawback of OT-RSHs is that the system-specific tuning of the range-separation parameter is not size-consistent. It therefore also lacks transferability, e.g., when considering processes involving orbitals not involved in the tuning or for reactions between different chromophores. Here we show that the recently reported ωLH22t range-separated local hybrid functional provides ionization energies, electron affinities, and fundamental gaps on par with OT-RSH treatments, approaching the quality of GW results, without any need for system-specific tuning. This holds from relevant organic chromophores of varying sizes all the way to atomic electron affinities. ωLH22t also gives excellent outer-valence quasiparticle spectra and is a generally accurate functional for both main-group and transition-metal energetics, as well as for a variety of excitation types. Range-separated local hybrid functionals are suggested as promising new quantum-chemical tools in molecular electronics.

17.
Dalton Trans ; 52(20): 6870-6875, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37157981

RESUMO

We report the preparation and structural characterization of the first persilylated metallocene via the metalation of decabromoferrocene. Although Grignard conditions turned out to be insufficient due to the steric and electronic effects of silyl groups causing a decreased nucleophilicity of the metalated intermediates, stepwise lithium-halogen exchange yields complex mixtures of polysilylated compounds FeC10DMSnH10-n (n = 10, 9, 8) including the targeted decasilylated ferrocene. These mixtures were successfully separated allowing a systematic study of silylation effects on ferrocene by XRD, CV, NMR and UV/vis spectroscopy supported by DFT calculations. The findings were used to develop a high-yielding and simple preparation method to generate a tenfold substituted overcrowded ferrocene, FeC10DMS8Me2.

18.
J Chem Theory Comput ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625881

RESUMO

We report the first full and efficient implementation of range-separated local hybrid functionals (RSLHs) into the TURBOMOLE program package. This enables the computation of ground-state energies and nuclear gradients as well as excitation energies. Regarding the computational effort, RSLHs scale like regular local hybrid functionals (LHs) with system or basis set size and increase timings by a factor of 2-3 in total. An advanced RSLH, ωLH22t, has been optimized for atomization energies and reaction barriers. It is an extension of the recent LH20t local hybrid and is based on short-range PBE and long-range HF exchange-energy densities, a pig2 calibration function to deal with the gauge ambiguity of exchange-energy densities, and reoptimized B95c correlation. ωLH22t has been evaluated for a wide range of ground-state and excited-state quantities. It further improves upon the already successful LH20t functional for the GMTKN55 main-group energetics test suite, and it outperforms any global hybrid while performing close to the top rung-4 functional, ωB97M-V, for these evaluations when augmented by D4 dispersion corrections. ωLH22t performs excellently for transition-metal reactivity and provides good balance between delocalization errors and left-right correlation for mixed-valence systems, with a somewhat larger bias toward localized states compared to LH20t. It approaches the accuracy of the best local hybrids to date for core, valence singlet and triplet, and Rydberg excitation energies while improving strikingly on intra- and intermolecular charge-transfer excitations, comparable to the most successful range-separated hybrids available.

19.
J Chem Theory Comput ; 19(1): 97-108, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36576816

RESUMO

A new composite method for the calculation of spin-crossover energies in 3d transition-metal complexes based on multireference methods is presented. The method reduces to MRCISD+Q at the complete-basis-set (CBS) level for atomic ions, for which it gives excitation energies with a mean absolute error of only ca. 0.01 eV. For molecular complexes, the CASPT2+δMRCI composite approach corresponds to a CASPT2/CBS calculation augmented by a high-level MRCISD+Q-CASPT2 correction with a smaller ligand basis set. For a set of [Fe(He)6]n+ test complexes, the approach reproduces full MRCISD+Q/CBS results to within better than 0.04 eV, without depending on any arbitrary IPEA shifts. The high-quality CASPT2+δMRCI method has then been applied to a series of 3d transition-metal hexaqua complexes in aqueous solution, augmented by an elaborate 3D-RISM-SCF solvent treatment of the underlying structures. It provides unprecedented agreement with experiment for the lowest-lying vertical spin-flip excitation energies, except for the Fe3+ system. Closer examination of the latter case provides strong evidence that the observed lowest-energy excitation at 1.56 eV, which has been used frequently for evaluating quantum-chemical methods, does not arise from the iron(III) hexaqua complex in solution, but from its singly deprotonated counterpart, [Fe(H2O)5OH]2+.

20.
Chemistry ; 29(7): e202202768, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327144

RESUMO

The reaction of the Pt complexes cis-[Pt(CH3 )(Ar){Ph2 P(Ind)}2 ] (Ind=2-(3-methyl)indolyl, Ar=4-tBuC6 H4 (1 a), 4-CH3 C6 H4 (1 b), Ph (1 c), 4-FC6 H4 (1 d), 4-ClC6 H4 (1 e), 4-CF3 C6 H4 (1 f)) with HF afforded the polyfluorido complexes trans-[Pt(F(HF)2 )(Ar){Ph2 P(Ind)}2 ] 2 a-f, which can be converted into the fluoride derivatives trans-[Pt(F)(Ar){Ph2 P(Ind)}2 ] (3 a-f) by treatment with CsF. The compounds 2 a-f and 3 a-f were characterised thoroughly by multinuclear NMR spectroscopy. The data reveal hydrogen bonding of the fluorido ligand with HF molecules and the indolylphosphine ligand. Polyfluorido complexes 2 a-f show larger |1 J(F,Pt)|, but lower 1 J(H,F) coupling constants when compared to the fluorido complexes 3 a-f. Decreasing 1 J(P,Pt) coupling constants in 2 a-f and 3 a-f suggest a cis influence of the aryl ligands in the following order: 4-tBuC6 H4 (a) ≈4-CH3 C6 H4 (b)

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...