Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853689

RESUMO

BACKGROUND: The FDA approval of oncolytic herpes simplex-1 virus (oHSV) therapy underscores its therapeutic promise and safety as a cancer immunotherapy. Despite this promise, the current efficacy of oHSV is significantly limited to a small subset of patients largely due to the resistance in tumor and tumor microenvironment (TME). METHODS: RNA sequencing (RNA-Seq) was used to identify molecular targets of oHSV resistance. Intracranial human and murine glioma or breast cancer brain metastasis (BCBM) tumor-bearing mouse models were employed to elucidate the mechanism underlying oHSV therapy-induced resistance. RESULTS: Transcriptome analysis identified IGF2 as one of the top secreted proteins following oHSV treatment. Moreover, IGF2 expression was significantly upregulated in 10 out of 14 recurrent GBM patients after treatment with oHSV, rQNestin34.5v.2 (71.4%) (p=0.0020) (ClinicalTrials.gov, NCT03152318). Depletion of IGF2 substantially enhanced oHSV-mediated tumor cell killing in vitro and improved survival of mice bearing BCBM tumors in vivo. To mitigate the oHSV-induced IGF2 in the TME, we constructed a novel oHSV, oHSV-D11mt, secreting a modified IGF2R domain 11 (IGF2RD11mt) that acts as IGF2 decoy receptor. Selective blocking of IGF2 by IGF2RD11mt significantly increased cytotoxicity, reduced oHSV-induced neutrophils/PMN-MDSCs infiltration, and reduced secretion of immune suppressive/proangiogenic cytokines, while increased CD8+cytotoxic T lymphocytes (CTLs) infiltration, leading to enhanced survival in GBM or BCBM tumor-bearing mice. CONCLUSION: This is the first study reporting that oHSV-induced secreted IGF2 exerts a critical role in resistance to oHSV therapy, which can be overcome by oHSV-D11mt as a promising therapeutic advance for enhanced viro-immunotherapy.

2.
Cell Rep Med ; 5(5): 101528, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38677283

RESUMO

Stimulator of interferon genes (STING)-dependent signaling is requisite for effective anti-microbial and anti-tumor activity. STING signaling is commonly defective in cancer cells, which enables tumor cells to evade the immunosurveillance system. We evaluate here whether intrinsic STING signaling in such tumor cells could be reconstituted by creating recombinant herpes simplex viruses (rHSVs) that express components of the STING signaling pathway. We observe that rHSVs expressing STING and/or cGAS replicate inefficiently yet retain in vivo anti-tumor activity, independent of oncolytic activity requisite on the trans-activation of extrinsic STING signaling in phagocytes by engulfed microbial dsDNA species. Accordingly, the in vivo effects of virotherapy could be simulated by nanoparticles incorporating non-coding dsDNA species, which comparably elicit the trans-activation of phagocytes and augment the efficacy of established cancer treatments including checkpoint inhibition and radiation therapy. Our results help elucidate mechanisms of virotherapeutic anti-tumor activity as well as provide alternate strategies to treat cancer.


Assuntos
DNA , Fagócitos , Animais , Fagócitos/imunologia , Fagócitos/metabolismo , Humanos , Camundongos , DNA/metabolismo , DNA/imunologia , DNA/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/genética , Simplexvirus/genética , Simplexvirus/imunologia , Camundongos Endogâmicos C57BL , Terapia Viral Oncolítica/métodos
4.
J Hematol Oncol ; 16(1): 45, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37131214

RESUMO

Dysregulation of the Notch signaling pathway, which is highly conserved across species, can drive aberrant epigenetic modification, transcription, and translation. Defective gene regulation caused by dysregulated Notch signaling often affects networks controlling oncogenesis and tumor progression. Meanwhile, Notch signaling can modulate immune cells involved in anti- or pro-tumor responses and tumor immunogenicity. A comprehensive understanding of these processes can help with designing new drugs that target Notch signaling, thereby enhancing the effects of cancer immunotherapy. Here, we provide an up-to-date and comprehensive overview of how Notch signaling intrinsically regulates immune cells and how alterations in Notch signaling in tumor cells or stromal cells extrinsically regulate immune responses in the tumor microenvironment (TME). We also discuss the potential role of Notch signaling in tumor immunity mediated by gut microbiota. Finally, we propose strategies for targeting Notch signaling in cancer immunotherapy. These include oncolytic virotherapy combined with inhibition of Notch signaling, nanoparticles (NPs) loaded with Notch signaling regulators to specifically target tumor-associated macrophages (TAMs) to repolarize their functions and remodel the TME, combining specific and efficient inhibitors or activators of Notch signaling with immune checkpoint blockers (ICBs) for synergistic anti-tumor therapy, and implementing a customized and effective synNotch circuit system to enhance safety of chimeric antigen receptor (CAR) immune cells. Collectively, this review aims to summarize how Notch signaling intrinsically and extrinsically shapes immune responses to improve immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Imunoterapia , Neoplasias/patologia , Antígenos de Neoplasias/farmacologia , Transdução de Sinais , Microambiente Tumoral
5.
Mol Ther Oncolytics ; 29: 30-41, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37114074

RESUMO

Longstanding evidence implicate glioma stem-like cells as the main drivers contributing toward glioblastoma (GBM) therapy resistance and tumor recurrence. Although oncolytic herpes simplex virus (oHSV) viral therapy is a promising biological therapy recently approved for melanoma (in the United States and Europe) and GBM (in Japan); however, the impact of this therapy on GBM stem-like cells (GSCs) is understudied. Here we show that post-oHSV virotherapy activated AKT signaling results in an enrichment of GSC signatures in glioma, which mimics the enrichment in GSC observed after radiation treatment. We also uncovered that a second-generation oncolytic virus armed with PTEN-L (oHSV-P10) decreases this by moderating IL6/JAK/STAT3 signaling. This ability was retained in the presence of radiation treatment and oHSV-P10-sensitized intracranial GBM to radiotherapy. Collectively, our findings uncover potential mechanisms to overcome GSC-mediated radiation resistance via oHSV-P10.

7.
Mol Ther Oncolytics ; 28: 171-181, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36789106

RESUMO

High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that plays an important role in inflammation and tumorigenesis. Receptor for advanced glycation end products (RAGE) is one of the major receptors to which extracellular HMGB1 binds to mediate its activity. RAGE is highly expressed on the endothelial cells (ECs) and regulates endothelial permeability during inflammation. Here, we introduced the endogenous secretory form of RAGE (esRAGE) as a decoy receptor for RAGE ligands into an oncolytic herpes simplex virus 1 (oHSV) (OVesRAGE), which, upon release, can function to block RAGE signaling. OVesRAGE significantly decreased phosphorylation of MEK1/2 and Erk and increased cleaved PARP in glioblastoma (GBM) cells in vitro and in vivo. oHSV-infected GBM cells co-cultured with ECs were used to test OVesRAGE effect on EC activation, vessel leakiness, virus replication, and tumor cell killing. OVesRAGE could effectively secrete esRAGE and rescue virus-induced EC migration and activation. Reduced EC activation facilitated virus replication in tumor cells when co-cultured with ECs. Finally, OVesRAGE significantly enhanced therapeutic efficacy in GBM-bearing mice. Collectively, our data demonstrate that HMGB1-RAGE signaling could be a promising target and that its inhibition is a feasible approach to improve the efficacy of oHSV therapy.

9.
J Immunother Cancer ; 11(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36796878

RESUMO

BACKGROUND: Mammalian cells have developed multiple intracellular mechanisms to defend against viral infections. These include RNA-activated protein kinase (PKR), cyclic GMP-AMP synthase and stimulation of interferon genes (cGAS-STING) and toll-like receptor-myeloid differentiation primary response 88 (TLR-MyD88). Among these, we identified that PKR presents the most formidable barrier to oncolytic herpes simplex virus (oHSV) replication in vitro. METHODS: To elucidate the impact of PKR on host responses to oncolytic therapy, we generated a novel oncolytic virus (oHSV-shPKR) which disables tumor intrinsic PKR signaling in infected tumor cells. RESULTS: As anticipated, oHSV-shPKR resulted in suppression of innate antiviral immunity and improves virus spread and tumor cell lysis both in vitro and in vivo. Single cell RNA sequencing combined with cell-cell communication analysis uncovered a strong correlation between PKR activation and transforming growth factor beta (TGF-ß) immune suppressive signaling in both human and preclinical models. Using a murine PKR targeting oHSV, we found that in immune-competent mice this virus could rewire the tumor immune microenvironment to increase the activation of antigen presentation and enhance tumor antigen-specific CD8 T cell expansion and activity. Further, a single intratumoral injection of oHSV-shPKR significantly improved the survival of mice bearing orthotopic glioblastoma. To our knowledge, this is the first report to identify dual and opposing roles of PKR wherein PKR activates antivirus innate immunity and induces TGF-ß signaling to inhibit antitumor adaptive immune responses. CONCLUSIONS: Thus, PKR represents the Achilles heel of oHSV therapy, restricting both viral replication and antitumor immunity, and an oncolytic virus that can target this pathway significantly improves response to virotherapy.


Assuntos
Neoplasias Encefálicas , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Terapia Viral Oncolítica/métodos , Simplexvirus , Fator de Crescimento Transformador beta , Microambiente Tumoral , eIF-2 Quinase/metabolismo
10.
J Ovarian Res ; 15(1): 130, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476493

RESUMO

BACKGROUND: Ovarian clear cell carcinoma (OCCC) accounts for approximately 8-10% of epithelial ovarian cancers in the United States. Although it is rare, OCCC usually presents with treatment challenges and the overall prognosis is far worse than high grade serous ovarian cancer HGSOC. The objective of this study was to examine the therapeutic relevance of combining oncolytic virus with cisplatin for ovarian cancer clear cell carcinoma (OCCC). RESULTS: We identified that TMEM205, a recently discovered transmembrane protein, contributes to chemoresistance in OCCC cells via the exosomal pathway. Mechanistically, TMEM205 undergoes ligand-independent constitutive endocytosis and co-localizes with Rab11 to contribute to the late recycling endosomes in a clathrin-independent manner. Further, we observed that oncolytic virus (oHSV) pretreatment followed by treatment with cisplatin decreases TMEM205 expression and sensitizes cells to cisplatin in a synergistic manner in OCCC cells. TMEM205 interacts with glycoprotein-C of oHSV post-infection; both of these proteins undergo ubiquitination and ultimately get shuttled outside the cell via exosomes. Thus, we demonstrate the mechanotransduction pathway of TMEM205-mediated chemoresistance along with targeting this pathway using oHSV and cisplatin as a powerful therapeutic strategy for OCCC. oHSV combination with cisplatin inhibits OCCC tumor growth in vivo in immunodeficient and immunocompetent mice models. CONCLUSION: Our results suggest that the combination of oHSV and cisplatin in immunocompetent as well as immune deficient OCCC tumor bearing mice reduces overall tumor burden as well as metastatic disease thereby providing survival benefit. Additionally, the detection of TMEM205 in exosomal cargo early in OCCC development has potential to be exploited as a biomarker.


Assuntos
Carcinoma , Vírus Oncolíticos , Neoplasias Ovarianas , Animais , Camundongos , Humanos , Feminino , Vírus Oncolíticos/genética , Mecanotransdução Celular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Resistência a Medicamentos , Proteínas de Membrana/genética
11.
Nat Cancer ; 3(11): 1318-1335, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36357700

RESUMO

Chemokines such as C-C motif ligand 5 (CCL5) regulate immune cell trafficking in the tumor microenvironment (TME) and govern tumor development, making them promising targets for cancer therapy. However, short half-lives and toxic off-target effects limit their application. Oncolytic viruses (OVs) have become attractive therapeutic agents. Here, we generate an oncolytic herpes simplex virus type 1 (oHSV) expressing a secretable single-chain variable fragment of the epidermal growth factor receptor (EGFR) antibody cetuximab linked to CCL5 by an Fc knob-into-hole strategy that produces heterodimers (OV-Cmab-CCL5). OV-Cmab-CCL5 permits continuous production of CCL5 in the TME, as it is redirected to EGFR+ glioblastoma (GBM) tumor cells. OV-Cmab-CCL5 infection of GBM significantly enhances the migration and activation of natural killer cells, macrophages and T cells; inhibits tumor EGFR signaling; reduces tumor size; and prolongs survival of GBM-bearing mice. Collectively, our data demonstrate that OV-Cmab-CCL5 offers a promising approach to improve OV therapy for solid tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Herpesvirus Humano 1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Camundongos , Imunidade Adaptativa , Neoplasias Encefálicas/terapia , Cetuximab/farmacologia , Receptores ErbB/genética , Glioblastoma/genética , Vírus Oncolíticos/genética , Microambiente Tumoral , Quimiocina CCL5/metabolismo
12.
Neurooncol Adv ; 4(1): vdac095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875691

RESUMO

Background: The prognosis of glioblastoma (GBM) remains dismal because therapeutic approaches have limited effectiveness. A new targeted treatment using MEK inhibitors, including trametinib, has been proposed to improve GBM therapy. Trametinib had a promising preclinical effect against several cancers, but its adaptive treatment resistance precluded its clinical translation in GBM. Previously, we have demonstrated that protein arginine methyltransferase 5 (PRMT5) is upregulated in GBM and its inhibition promotes apoptosis and senescence in differentiated and stem-like tumor cells, respectively. We tested whether inhibition of PRMT5 can enhance the efficacy of trametinib against GBM. Methods: Patient-derived primary GBM neurospheres (GBMNS) with transient PRMT5 knockdown were treated with trametinib and cell viability, proliferation, cell cycle progression, ELISA, and western blot were analyzed. In vivo, NSG mice were intracranially implanted with PRMT5-intact and -depleted GBMNS, treated with trametinib by daily oral gavage, and observed for tumor progression and mice survival rate. Results: PRMT5 depletion enhanced trametinib-induced cytotoxicity in GBMNS. PRMT5 knockdown significantly decreased trametinib-induced AKT and ERBB3 escape pathways. However, ERBB3 inhibition alone failed to block trametinib-induced AKT activity suggesting that the enhanced antitumor effect imparted by PRMT5 knockdown in trametinib-treated GBMNS resulted from AKT inhibition and not ERBB3 inhibition. In orthotopic murine xenograft models, PRMT5-depletion extended the survival of tumor-bearing mice, and combination with trametinib further increased survival. Conclusion: Combined PRMT5/MEK inhibition synergistically inhibited GBM in animal models and is a promising strategy for GBM therapy.

13.
Mol Ther Oncolytics ; 26: 63-75, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35795093

RESUMO

High-grade gliomas (HGGs) are lethal central nervous system tumors that spread quickly through the brain, making treatment challenging. Integrins are transmembrane receptors that mediate cell-extracellular matrix (ECM) interactions, cellular adhesion, migration, growth, and survival. Their upregulation and inverse correlation in HGG malignancy make targeting integrins a viable therapeutic option. Integrins also play a role in herpes simplex virus 1 (HSV-1) entry. Oncolytic HSV-1 (oHSV) is the most clinically advanced oncolytic virotherapy, showing a superior safety and efficacy profile over standard cancer treatment of solid cancers, including HGG. With the FDA-approval of oHSV for melanoma and the recent conditional approval of oHSV for malignant glioma in Japan, usage of oHSV for HGG has become of great interest. In this review, we provide a systematic overview of the role of integrins in relation to oHSV, with a special focus on its therapeutic potential against HGG. We discuss the pros and cons of targeting integrins during oHSV therapy: while integrins play a pro-therapeutic role by acting as a gateway for oHSV entry, they also mediate the innate antiviral immune responses that hinder oHSV therapeutic efficacy. We further discuss alternative strategies to regulate the dual functionality of integrins in the context of oHSV therapy.

14.
Cell Rep ; 39(8): 110839, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613589

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and fatal disease of all brain tumor types. Most therapies rarely provide clinically meaningful outcomes in the treatment of GBM. Although antibody-drug conjugates (ADCs) are promising anticancer drugs, no ADCs have been clinically successful for GBM, primarily because of poor blood-brain barrier (BBB) penetration. Here, we report that ADC homogeneity and payload loading rate are critical parameters contributing to this discrepancy. Although both homogeneous and heterogeneous conjugates exhibit comparable in vitro potency and pharmacokinetic profiles, the former shows enhanced payload delivery to brain tumors. Our homogeneous ADCs provide improved antitumor effects and survival benefits in orthotopic brain tumor models. We also demonstrate that overly drug-loaded species in heterogeneous conjugates are particularly poor at crossing the BBB, leading to deteriorated overall brain tumor targeting. Our findings indicate the importance of homogeneous conjugation with optimal payload loading in generating effective ADCs for intractable brain tumors.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Imunoconjugados , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Preparações Farmacêuticas
15.
J Neuropathol Exp Neurol ; 81(5): 312-329, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35446393

RESUMO

Rodent brain tumor models have been useful for developing effective therapies for glioblastomas (GBMs). In this review, we first discuss the 3 most commonly used rat brain tumor models, the C6, 9L, and F98 gliomas, which are all induced by repeated injections of nitrosourea to adult rats. The C6 glioma arose in an outbred Wistar rat and its potential to evoke an alloimmune response is a serious limitation. The 9L gliosarcoma arose in a Fischer rat and is strongly immunogenic, which must be taken into consideration when using it for therapy studies. The F98 glioma may be the best of the 3 but it does not fully recapitulate human GBMs because it is weakly immunogenic. Next, we discuss a number of mouse models. The first are human patient-derived xenograft gliomas in immunodeficient mice. These have failed to reproduce the tumor-host interactions and microenvironment of human GBMs. Genetically engineered mouse models recapitulate the molecular alterations of GBMs in an immunocompetent environment and "humanized" mouse models repopulate with human immune cells. While the latter are rarely isogenic, expensive to produce, and challenging to use, they represent an important advance. The advantages and limitations of each of these brain tumor models are discussed. This information will assist investigators in selecting the most appropriate model for the specific focus of their research.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Gliossarcoma , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioma/patologia , Humanos , Camundongos , Ratos , Ratos Wistar , Microambiente Tumoral
16.
BMC Cancer ; 22(1): 400, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418059

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common high-grade malignant brain tumour in adults and arises from the glial cells in the brain. The prognosis of treated GBM remains very poor with 5-year survival rates of 5%, a figure which has not improved over the last few decades. Currently, there is a modest 14-month overall median survival in patients undergoing maximum safe resection plus adjuvant chemoradiotherapy. HOX gene dysregulation is now a widely recognised feature of many malignancies. METHODS: In this study we have focused on HOX gene dysregulation in GBM as a potential therapeutic target in a disease with high unmet need. RESULTS: We show significant dysregulation of these developmentally crucial genes and specifically that HOX genes A9, A10, C4 and D9 are strong candidates for biomarkers and treatment targets for GBM and GBM cancer stem cells. We evaluated a next generation therapeutic peptide, HTL-001, capable of targeting HOX gene over-expression in GBM by disrupting the interaction between HOX proteins and their co-factor, PBX. HTL-001 induced both caspase-dependent and -independent apoptosis in GBM cell lines. CONCLUSION: In vivo biodistribution studies confirmed that the peptide was able to cross the blood brain barrier. Systemic delivery of HTL-001 resulted in improved control of subcutaneous murine and human xenograft tumours and improved survival in a murine orthotopic model.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Genes Homeobox , Glioblastoma/tratamento farmacológico , Glioblastoma/terapia , Humanos , Camundongos , Peptídeos/genética , Distribuição Tecidual
17.
Brain Tumor Pathol ; 39(2): 57-64, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35384530

RESUMO

Despite current progress in treatment, glioblastoma (GBM) remains a lethal primary malignant tumor of the central nervous system. Although immunotherapy has recently achieved remarkable survival effectiveness in multiple malignancies, none of the immune checkpoint inhibitors (ICIs) for GBM have shown anti-tumor efficacy in clinical trials. GBM has a characteristic immunosuppressive tumor microenvironment (TME) that results in the failure of ICIs. Oncolytic herpes simplex virotherapy (oHSV) is the most advanced United States Food and Drug Administration-approved virotherapy for advanced metastatic melanoma patients. Recently, another oHSV, Delytact®, was granted conditional approval in Japan against GBM, highlighting it as a promising treatment. Since oncolytic virotherapy can recruit abundant immune cells and modify the immune TME, oncolytic virotherapy for immunologically cold GBM will be an attractive therapeutic option for GBM. However, as these immune cells have roles in both anti-tumor and anti-viral immunity, fine-tuning of the TME using oncolytic virotherapy will be important to maximize the therapeutic efficacy. In this review, we discuss the current knowledge of oHSV, with a focus on the role of immune cells as friend or foe in oncolytic virotherapy.


Assuntos
Glioblastoma , Glioma , Herpes Simples , Terapia Viral Oncolítica , Glioblastoma/terapia , Glioma/terapia , Herpes Simples/terapia , Humanos , Terapia Viral Oncolítica/métodos , Simplexvirus/genética , Microambiente Tumoral
18.
Mol Ther ; 30(6): 2153-2162, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143960

RESUMO

Cancer is a disease caused by loss of regulatory processes that control the cell cycle, resulting in increased proliferation. The loss of control can deregulate both tumor suppressors and oncogenes. Apart from cell intrinsic gene mutations and environmental factors, infection by cancer-causing viruses also induces changes that lead to malignant transformation. This can be caused by both expression of oncogenic viral proteins and also by changes in cellular genes and proteins that affect the epigenome. Thus, these epigenetic modifiers are good therapeutic targets, and several epigenetic inhibitors are approved for the treatment of different cancers. In addition to small molecule drugs, biological therapies, such as antibodies and viral therapies, are also increasingly being used to treat cancer. An HSV-1-derived oncolytic virus is currently approved by the US FDA and the European Medicines Agency. Similarly, an adenovirus-based therapeutic is approved for use in China for some cancer types. Because viruses can affect cellular epigenetics, the interaction of epigenome-targeting drugs with oncogenic and oncolytic viruses is a highly significant area of investigation. Here, we will review the current knowledge about the impact of using epigenetic drugs in tumors positive for oncogenic viruses or as therapeutic combinations with oncolytic viruses.


Assuntos
Histonas , Neoplasias , Vírus Oncogênicos , Vírus Oncolíticos , Histonas/genética , Humanos , Neoplasias/genética , Neoplasias/terapia , Vírus Oncogênicos/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética
19.
Viruses ; 14(1)2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35062322

RESUMO

Oncolytic herpes simplex virus (oHSV) is a highly promising treatment for solid tumors. Intense research and development efforts have led to first-in-class approval for an oHSV for melanoma, but barriers to this promising therapy still exist that limit efficacy. The process of infection, replication and transmission of oHSV in solid tumors is key to obtaining a good lytic destruction of infected cancer cells to kill tumor cells and release tumor antigens that can prime anti-tumor efficacy. Intracellular tumor cell signaling and tumor stromal cells present multiple barriers that resist oHSV activity. Here, we provide a review focused on oncolytic HSV and the essential viral genes that allow for virus replication and spread in order to gain insight into how manipulation of these pathways can be exploited to potentiate oHSV infection and replication among tumor cells.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Replicação Viral , Animais , Linhagem Celular Tumoral , Herpes Simples , Herpesvirus Humano 1/genética , Humanos , Tropismo
20.
Clin Cancer Res ; 28(7): 1460-1473, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022322

RESUMO

PURPOSE: Oncolytic herpes simplex virus-1 (oHSV) infection of brain tumors activates NOTCH, however the consequences of NOTCH on oHSV-induced immunotherapy is largely unknown. Here we evaluated the impact of NOTCH blockade on virus-induced immunotherapy. EXPERIMENTAL DESIGN: RNA sequencing (RNA-seq), TCGA data analysis, flow cytometry, Luminex- and ELISA-based assays, brain tumor animal models, and serum analysis of patients with recurrent glioblastoma (GBM) treated with oHSV was used to evaluate the effect of NOTCH signaling on virus-induced immunotherapy. RESULTS: TCGA data analysis of patients with grade IV glioma and oHSV treatment of experimental brain tumors in mice showed that NOTCH signaling significantly correlated with a higher myeloid cell infiltration. Immunofluorescence staining and RNA-seq uncovered a significant induction of Jag1 (NOTCH ligand) expression in infiltrating myeloid cells upon oHSV infection. Jag1-expressing macrophages further spread NOTCH activation in the tumor microenvironment (TME). NOTCH-activated macrophages increased the secretion of CCL2, which further amplified myeloid-derived suppressor cells. CCL2 and IL10 induction was also observed in serum of patients with recurrent GBM treated with oHSV (rQnestin34.5; NCT03152318). Pharmacologic blockade of NOTCH signaling rescued the oHSV-induced immunosuppressive TME and activated a CD8-dependent antitumor memory response, resulting in a therapeutic benefit. CONCLUSIONS: NOTCH-induced immunosuppressive myeloid cell recruitment limited antitumor immunity. Translationally, these findings support the use of NOTCH inhibition in conjunction with oHSV therapy.


Assuntos
Glioblastoma , Células Supressoras Mieloides , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Imunoterapia , Camundongos , Células Supressoras Mieloides/metabolismo , Recidiva Local de Neoplasia/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Simplexvirus , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...