Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36617464

RESUMO

The arrival of the Infinium DNA methylation BeadChips for mice and other nonhuman mammalian species has outpaced the development of the informatics that supports their use for epigenetics study in model organisms. Here, we present informatics infrastructure and methods to allow easy DNA methylation analysis on multiple species, including domesticated animals and inbred laboratory mice (in SeSAMe version 1.16.0+). First, we developed a data-driven analysis pipeline covering species inference, genome-specific data preprocessing and regression modeling. We targeted genomes of 310 species and 37 inbred mouse strains and showed that genome-specific preprocessing prevents artifacts and yields more accurate measurements than generic pipelines. Second, we uncovered the dynamics of the epigenome evolution in different genomic territories and tissue types through comparative analysis. We identified a catalog of inbred mouse strain-specific methylation differences, some of which are linked to the strains' immune, metabolic and neurological phenotypes. By streamlining DNA methylation array analysis for undesigned genomes, our methods extend epigenome research to broad species contexts.


Assuntos
Metilação de DNA , Epigenoma , Camundongos , Animais , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Ilhas de CpG , Genoma , Epigênese Genética , Mamíferos/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-38455390

RESUMO

Infinium Methylation BeadChips are widely used to profile DNA cytosine modifications in large cohort studies for reasons of cost-effectiveness, accurate quantification, and user-friendly data analysis in characterizing these canonical epigenetic marks. In this work, we conducted a comprehensive evaluation of the updated Infinium MethylationEPIC v2 BeadChip (EPICv2). Our evaluation revealed that EPICv2 offers significant improvements over its predecessors, including expanded enhancer coverage, applicability to diverse ancestry groups, support for low-input DNA down to one nanogram, coverage of existing epigenetic clocks, cell type deconvolution panels, and human trait associations, while maintaining accuracy and reproducibility. Using EPICv2, we were able to identify epigenome and sequence signatures in cell line models of DNMT and SETD2 loss and/or hypomorphism. Furthermore, we provided probe-wise evaluation and annotation to facilitate the use of new features on this array for studying the interplay between somatic mutations and epigenetic landscape in cancer genomics. In conclusion, EPICv2 provides researchers with a valuable tool for studying epigenetic modifications and their role in development and disease.

3.
Development ; 149(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35876680

RESUMO

Despite the prominent role of endo-siRNAs in transposon silencing, their expression is not limited to these 'nonself' DNA elements. Transcripts of protein-coding genes ('self' DNA) in some cases also produce endo-siRNAs in yeast, plants and animals. How cells distinguish these two populations of siRNAs to prevent unwanted silencing of active genes in animals is not well understood. To address this question, we inserted various self-gene or gfp fragments into an LTR retrotransposon that produces abundant siRNAs and examined the propensity of these gene fragments to produce ectopic siRNAs in the Caenorhabditis elegans germline. We found that fragments of germline genes are generally protected from production of ectopic siRNAs. This phenomenon, which we termed 'target-directed suppression of siRNA production' (or siRNA suppression), is dependent on the germline expression of target mRNA and requires germline P-granule components. We found that siRNA suppression can also occur in naturally produced endo-siRNAs. We suggest that siRNA suppression plays an important role in regulating siRNA expression and preventing self-genes from aberrant epigenetic silencing. This article has an associated 'The people behind the papers' interview.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Humanos , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
4.
Elife ; 92020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32804637

RESUMO

Nuclear RNAi provides a highly tractable system to study RNA-mediated chromatin changes and epigenetic inheritance. Recent studies have indicated that the regulation and function of nuclear RNAi-mediated heterochromatin are highly complex. Our knowledge of histone modifications and the corresponding histonemodifying enzymes involved in the system remains limited. In this study, we show that the heterochromatin mark, H3K23me3, is induced by nuclear RNAi at both exogenous and endogenous targets in C. elegans. In addition, dsRNA-induced H3K23me3 can persist for multiple generations after the dsRNA exposure has stopped. We demonstrate that the histone methyltransferase SET-32, methylates H3K23 in vitro. Both set-32 and the germline nuclear RNAi Argonaute, hrde-1, are required for nuclear RNAi-induced H3K23me3 in vivo. Our data poise H3K23me3 as an additional chromatin modification in the nuclear RNAi pathway and provides the field with a new target for uncovering the role of heterochromatin in transgenerational epigenetic silencing.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Histona Metiltransferases/genética , Histonas/metabolismo , Interferência de RNA , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Histona Metiltransferases/metabolismo , RNA Nuclear/genética , RNA Nuclear/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...