Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892085

RESUMO

In wounded Arabidopsis thaliana leaves, four 13S-lipoxygenases (AtLOX2, AtLOX3, AtLOX4, AtLOX6) act in a hierarchical manner to contribute to the jasmonate burst. This leads to defense responses with LOX2 playing an important role in plant resistance against caterpillar herb-ivory. In this study, we sought to characterize the impact of AtLOX2 on wound-induced phytohormonal and transcriptional responses to foliar mechanical damage using wildtype (WT) and lox2 mutant plants. Compared with WT, the lox2 mutant had higher constitutive levels of the phytohormone salicylic acid (SA) and enhanced expression of SA-responsive genes. This suggests that AtLOX2 may be involved in the biosynthesis of jasmonates that are involved in the antagonism of SA biosynthesis. As expected, the jasmonate burst in response to wounding was dampened in lox2 plants. Generally, 1 h after wounding, genes linked to jasmonate biosynthesis, jasmonate signaling attenuation and abscisic acid-responsive genes, which are primarily involved in wound sealing and healing, were differentially regulated between WT and lox2 mutants. Twelve h after wounding, WT plants showed stronger expression of genes associated with plant protection against insect herbivory. This study highlights the dynamic nature of jasmonate-responsive gene expression and the contribution of AtLOX2 to this pathway and plant resistance against insects.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Lipoxigenase , Oxilipinas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lipoxigenase/metabolismo , Lipoxigenase/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Transcriptoma , Ácido Salicílico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Mutação , Perfilação da Expressão Gênica , Lipoxigenases
2.
J Chem Ecol ; 50(3-4): 168-184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443712

RESUMO

Many plant species, particularly legumes, protect themselves with saponins. Previously, a correlation was observed between levels of oleanolic acid-derived saponins, such as hederagenin-derived compounds, in the legume Medicago truncatula and caterpillar deterrence. Using concentrations that reflect the foliar levels of hederagenin-type saponins, the sapogenin hederagenin was not toxic to 4th instar caterpillars of the cabbage looper Trichoplusia ni nor did it act as a feeding deterrent. Female caterpillars consumed more diet than males, presumably to obtain the additional nutrients required for oogenesis, and are, thus, exposed to higher hederagenin levels. When fed the hederagenin diet, male caterpillars expressed genes encoding trypsin-like proteins (LOC113500509, LOC113501951, LOC113501953, LOC113501966, LOC113501965, LOC113499659, LOC113501950, LOC113501948, LOC113501957, LOC113501962, LOC113497819, LOC113501946, LOC113503910) as well as stress-responsive (LOC113503484, LOC113505107) proteins and cytochrome P450 6B2-like (LOC113493761) at higher levels than females. In comparison, female caterpillars expressed higher levels of cytochrome P450 6B7-like (LOC113492289). Bioinformatic tools predict that cytochrome P450s could catalyze the oxygenation of hederagenin which would increase the hydrophilicity of the compound. Expression of a Major Facilitator Subfamily (MFS) transporter (LOC113492899) showed a hederagenin dose-dependent increase in gene expression suggesting that this transporter may be involved in sapogenin efflux. These sex-related differences in feeding and detoxification should be taken into consideration in insecticide evaluations to minimize pesticide resistance.


Assuntos
Mariposas , Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Saponinas , Transcriptoma , Animais , Feminino , Masculino , Saponinas/metabolismo , Saponinas/química , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Mariposas/efeitos dos fármacos , Mariposas/fisiologia , Mariposas/genética , Transcriptoma/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Caracteres Sexuais
3.
Pest Manag Sci ; 80(6): 2965-2975, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38298017

RESUMO

BACKGROUND: Integrated Pest Management (IPM) seeks to combine multiple management strategies for optimal pest control. One method that is successfully employed in IPM is the use of beneficial organisms. However, in severe circumstances when pest insects exceed threshold limits, insecticides may still need to be implemented. Thus, understanding the effects of insecticides on biocontrol agents, such as parasitoid wasps, is paramount to ensure sustainable agroecosystems. Sublethal effects of the bioinsecticide spinosyn, a mixture of the bacterial Saccharopolyspora spinosa (Mertz and Yao) fermentation products spinosyn A and D, on eggs of Trichoplusia ni (Hübner), a cruciferous crop pest, and its egg parasitoid Trichogramma brassicae (Bezdenko) was investigated. RESULTS: The LC50 for spinosyn A and D (dissolved in ethanol) on T. ni eggs is 54 ng mL-1. Transcriptomics on caterpillars (1st and 3rd instars) that hatched from eggs treated with sublethal concentrations of spinosyn identified the upregulation of several genes encoding proteins that may be involved in insecticide resistance including detoxification enzymes, such as cytochrome P450s, glutathione S-transferases and esterases. Sublethal T. ni egg treatments did not affect parasitoid emergence, however, there was a marked increase in the size of T. brassicae hind tibia and wings that emerged from spinosyn-treated eggs. CONCLUSIONS: For the caterpillar, treatment of eggs with sublethal concentrations of spinosyn may induce insecticide resistance mechanisms. For the parasitoids, their increased size when reared in spinosyn-treated eggs suggests that the emerged wasps may have higher performance. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Inseticidas , Larva , Macrolídeos , Mariposas , Óvulo , Vespas , Animais , Mariposas/parasitologia , Mariposas/efeitos dos fármacos , Vespas/efeitos dos fármacos , Vespas/fisiologia , Óvulo/efeitos dos fármacos , Óvulo/parasitologia , Inseticidas/farmacologia , Macrolídeos/farmacologia , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Controle Biológico de Vetores
4.
J Biol Chem ; 299(3): 102898, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639029

RESUMO

Jasmonates are oxylipin phytohormones critical for plant resistance against necrotrophic pathogens and chewing herbivores. An early step in their biosynthesis is catalyzed by non-heme iron lipoxygenases (LOX; EC 1.13.11.12). In Arabidopsis thaliana, phosphorylation of Ser600 of AtLOX2 was previously reported, but whether phosphorylation regulates AtLOX2 activity is unclear. Here, we characterize the kinetic properties of recombinant WT AtLOX2 (AtLOX2WT). AtLOX2WT displays positive cooperativity with α-linolenic acid (α-LeA, jasmonate precursor), linoleic acid (LA), and arachidonic acid (AA) as substrates. Enzyme velocity with endogenous substrates α-LeA and LA increased with pH. For α-LeA, this increase was accompanied by a decrease in substrate affinity at alkaline pH; thus, the catalytic efficiency for α-LeA was not affected over the pH range tested. Analysis of Ser600 phosphovariants demonstrated that pseudophosphorylation inhibits enzyme activity. AtLOX2 activity was not detected in phosphomimics Atlox2S600D and Atlox2S600M when α-LeA or AA were used as substrates. In contrast, phosphonull mutant Atlox2S600A exhibited strong activity with all three substrates, α-LeA, LA, and AA. Structural comparison between the AtLOX2 AlphaFold model and a complex between 8R-LOX and a 20C polyunsaturated fatty acid suggests a close proximity between AtLOX2 Ser600 and the carboxylic acid head group of the polyunsaturated fatty acid. This analysis indicates that Ser600 is located at a critical position within the AtLOX2 structure and highlights how Ser600 phosphorylation could affect AtLOX2 catalytic activity. Overall, we propose that AtLOX2 Ser600 phosphorylation represents a key mechanism for the regulation of AtLOX2 activity and, thus, the jasmonate biosynthesis pathway and plant resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lipoxigenase , Oxilipinas , Arabidopsis/metabolismo , Ácido Araquidônico , Ácidos Graxos Insaturados , Ácido Linoleico , Lipoxigenase/química , Lipoxigenase/genética , Lipoxigenase/metabolismo , Mutação , Oxilipinas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
5.
Cureus ; 14(10): e30157, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397910

RESUMO

BACKGROUND: The preliminary study was undertaken with the aim to assess the effect of fluoride content in water on the Intelligence Quotient (IQ) of school children aged 12-13 years residing in areas that differ with respect to fluoride levels. MATERIALS AND METHODS: The IQ was measured using Raven's Colored Progressive Matrices in 90 children, who were life-long residents in three villages (30 children each) of similar population size but differing in the level of fluoride in drinking water. Urinary fluoride concentration was measured using the selective ion electrode technique. One-way ANOVA was used for the statistical analysis of the data. Results: Children who lived in locations with fluoride levels of 1.60, 6.70, or 2.80 parts per million in their drinking water had urinary fluoride concentrations of 1.60, 6.82, or 2.69 parts per million, and IQ scores of 16.77 + 8.24, 19.36 + 9.98, or 21.87 + 7.47, respectively. CONCLUSION: The results indicated that there was a positive correlation between excess fluoride in drinking water and IQ.

6.
Heredity (Edinb) ; 128(6): 531-541, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568742

RESUMO

Introgression of genes from related species can be a powerful way to genetically improve crop yields, but selection for one trait can come at the cost to others. Wheat varieties with translocation of the short arm of chromosome 1 from the B genome of wheat (1BS) with the short arm of chromosome 1 from rye (1RS) are popular globally for their positive effect on yield and stress resistance. Unfortunately, this translocation (1BL.1RS) is also associated with poor bread making quality, mainly due to the presence of Sec-1 on its proximal end, encoding secalin proteins, and the absence of Glu-B3/Gli-B1-linked loci on its distal end, encoding low molecular weight glutenin subunits (LMW-GS). The present study aims to replace these two important loci on the 1RS arm with the wheat 1BS loci, in two popular Indian wheat varieties, PBW550 and DBW17, to improve their bread-making quality. Two donor lines in the cultivar Pavon background with absence of the Sec-1 locus and presence of the Glu-B3/Gli-B1 locus, respectively, were crossed and backcrossed with these two selected wheat varieties. In the advancing generations, marker assisted foreground selection was done for Sec-1- and Glu-B3/Gli-B1+ loci while recurrent parent recovery was done with the help of SSR markers. BC2F5 and BC2F6 near isosgenic lines (NILs) with absence of Sec-1 and presence of Glu-B3/Gli-B1 loci were evaluated for two years in replicated yield trials. As a result of this selection, thirty promising lines were generated that demonstrated improved bread making quality but also balanced with improved yield-related traits compared to the parental strains. The study demonstrates the benefits of using marker-assisted selection to replace a few loci with negative effects within larger alien translocations for crop improvement.


Assuntos
Pão , Triticum , Alelos , Secale/genética , Translocação Genética , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...