Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1090163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818858

RESUMO

Leaf rust, caused by Puccinia triticina (Pt) is among the most devastating diseases posing a significant threat to global wheat production. The continuously evolving virulent Pt races in North America calls for exploring new sources of leaf rust resistance. A diversity panel of 365 bread wheat accessions selected from a worldwide population of landraces and cultivars was evaluated at the seedling stage against four Pt races (TDBJQ, TBBGS, MNPSD and, TNBJS). A wide distribution of seedling responses against the four Pt races was observed. Majority of the genotypes displayed a susceptible response with only 28 (9.8%), 59 (13.5%), 45 (12.5%), and 29 (8.1%) wheat accessions exhibiting a highly resistant response to TDBJQ, TBBGS, MNPSD and, TNBJS, respectively. Further, we conducted a high-resolution multi-locus genome-wide association study (GWAS) using a set of 302,524 high-quality single nucleotide polymorphisms (SNPs). The GWAS analysis identified 27 marker-trait associations (MTAs) for leaf rust resistance on different wheat chromosomes of which 20 MTAs were found in the vicinity of known Lr genes, MTAs, or quantitative traits loci (QTLs) identified in previous studies. The remaining seven significant MTAs identified represent genomic regions that harbor potentially novel genes for leaf rust resistance. Furthermore, the candidate gene analysis for the significant MTAs identified various genes of interest that may be involved in disease resistance. The identified resistant lines and SNPs linked to the QTLs in this study will serve as valuable resources in wheat rust resistance breeding programs.

2.
Phytopathology ; 113(3): 508-515, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36346374

RESUMO

Deploying adult plant resistance (APR) against rust diseases is an important breeding objective of most wheat-breeding programs. The gene Lr34 is an effective and widely deployed broad-spectrum APR gene in wheat against leaf rust fungus Puccinia triticina. Various molecular markers have been developed for Lr34, but they either require post-PCR handling processes or are not economical. Herein, we developed a high-resolution melting (HRM)-based diagnostic assay for Lr34 based on a 3-bp 'TTC' deletion in exon 11 of the resistant allele. The susceptible cultivar Thatcher (Tc) and the near-isogenic Thatcher line (RL6058) with Lr34 yielded distinct melting profiles and were differentiated with high reproducibility. For further validation, all three copies of Lr34 were cloned in plasmid vectors, and HRM analysis using individual and combination (equimolar mixture of three copies) homoeologs yielded distinct melting profiles. An additional layer of genotyping was provided by a LunaProbe assay. The allele-specific probes successfully distinguished the homoeologs but not Tc and RL6058. Furthermore, the practical deployment of the HRM assay was tested by running the marker on a set of breeding lines. When compared with a kompetitive allele-specific PCR (KASP) Lr34 assay, the HRM assay had similar genotyping results and was able to accurately differentiate the resistant and susceptible breeding lines. However, our HRM assay was unable to detect the heterozygote. To our knowledge, this is the first report of an HRM assay for genotyping a wheat rust resistance gene.


Assuntos
Basidiomycota , Doenças das Plantas , Reprodutibilidade dos Testes , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Puccinia , Basidiomycota/genética , Plantas , Resistência à Doença/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...