Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955307

RESUMO

Proban® is a multiphase treatment of cotton fabrics based on the formation of pre-condensates using the flame retardant (FR) agent tetrakis (hydroxymethyl) phosphonium salts (THPx). The assessment of the durability of a product demands a preliminary understanding of how relevant it is to extend its lifetime. It is therefore important to minimize the risk of agents impacting: (1) the protection level, (2) shape and dimensions, and (3) additional comfort characteristics of the fabric. This research focused on the impact of washing conditions on the durability of FR properties and appearance of Proban® cotton fabrics, which was systematically arranged through the variation in the chemistry distribution in the Sinner's circle. The chemical share was varied in laboratory conditions as a simulation of industrial washing based on component dosing, where the temperature, time and mechanical agitation were constant. The washing of cotton fabrics was performed through 10 cycles in four baths containing high alkali components, medium alkali components, high alkali reference detergent and water. The environmental acceptability of washing procedures through effluent analysis was assessed by physico-chemical and organic indicators. The limited oxygen index (LOI), calorimetric parameters (micro combustion calorimetry), thermal stability and evolved gases during thermal decomposition (thermogravimetric analyzer (TGA) coupled with an infrared spectrometer (TG-IR)), surface examination (FE-SEM), spectral characteristics and pH of the aqueous extract of the fabrics before and after 10 washing cycles were selected for proof of durability. The medium alkali bath was confirmed as a washing concept for Proban® cotton fabric through the preservation of FR properties examined through LOI, TGA, TG-IR and MCC parameters and appearance color and low level of fibrillation.

2.
Polymers (Basel) ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956601

RESUMO

The research deals with functionalization of a standard polyester fabric with biopolymer chitosan, whose premises are multifunctional and favour ecological effects. Due to the incompatibility of synthetic and natural polymers, the chitosan treatment was preceded by alkaline hydrolysis with sodium hydroxide with the addition of cationic and anionic surfactants as promoters. Compatibility of the chitosan with untreated and alkali-hydrolyzed fabrics was performed by analysis of mechanical and physico-chemical properties. The number of characterisation procedures performed required the use of hierarchical cluster analysis (HCA) to identify homogeneous groups or clusters in which similarities and differences between samples are visible. Almost all applied methods and evaluation parameters have shown that alkaline hydrolysis of polyester fabric has the best potential for functionalization with chitosan. Therefore, the addition of surfactants as promoters during alkaline hydrolysis is not necessary in the pretreatment process phase.

3.
Materials (Basel) ; 15(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35888258

RESUMO

The possibility of reactive printability on protective flame-resistant fabrics, varied in composition of weft threads and weave was investigated. In addition, the wash fastness of printed samples was analyzed. The functional properties of fabrics were assessed by measuring of the Limiting Oxygen Index (LOI). Printing was performed with two printing pastes varied in thickeners and two dyestuff concentrations. The samples were analyzed by microscopic imaging using digital microscope and spectrophotometric measurement before and after the five washing cycles. The results confirmed the printability of FR inherent fabrics specified through fine colored effects and optimal wash fastness.

4.
Polymers (Basel) ; 14(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746018

RESUMO

The paper investigates the shielding effectiveness of a newly developed cotton and polyester fabric into which conductive stainless-steel threads were incorporated in the warp and weft directions at frequencies 0.9 GHz, 1.8 GHz, 2.1 GHz, and 2.4 GHz. As resistance to external influences and degradation is an additional critical factor for protective textiles, the newly developed protective fabric was exposed to cumulative wash cycles with liquid and powder detergents, which were targeted to preserve the shielding effectiveness (SE). In addition to the SE shielding effectiveness, the influence of 10 washing cycles on the change in thickness as a structural parameter was analyzed. Micro-images of fabric surfaces before and after the first, third, fifth, seventh, and tenth washing cycles were also observed. The obtained results showed that powder and liquid detergents were well formulated to preserve the electromagnetic shielding effectiveness (EMSE) at higher frequencies. However, their impact on the appearance of the surface was not fully consistent with the shielding effectiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...