Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764638

RESUMO

In this study, we fabricated graphitic carbon nitride (g-C3N4) nanosheets with embedded ZnCdS nanoparticles to form a type II heterojunction using a facile synthesis approach, and we used them for photocatalytic H2 production. The morphologies, chemical structure, and optical properties of the obtained g-C3N4-ZnCdS samples were characterized by a battery of techniques, such as TEM, XRD, XPS, and UV-Vis DRS. The as-synthesized g-C3N4-ZnCdS photocatalyst exhibited the highest hydrogen production rate of 108.9 µmol·g-1·h-1 compared to the individual components (g-C3N4: 13.5 µmol·g-1·h-1, ZnCdS: 45.3 µmol·g-1·h-1). The improvement of its photocatalytic activity can mainly be attributed to the heterojunction formation and resulting synergistic effect, which provided more channels for charge carrier migration and reduced the recombination of photogenerated electrons and holes. Meanwhile, the g-C3N4-ZnCdS heterojunction catalyst also showed a higher stability over a number of repeated cycles. Our work provides insight into using g-C3N4 and metal sulfide in combination so as to develop low-cost, efficient, visible-light-active hydrogen production photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...