Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 71(3): 481-500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225854

RESUMO

Globally, people are in great threat due to the highly spreading of viral infectious diseases. Every year like 100-300 million cases of infections are found, and among them, above 80% are not recognized and irrelevant. Dengue virus (DENV) is an arbovirus infection that currently infects people most frequently. DENV encompasses four viral serotypes, and they each express comparable sign. From a mild febrile sickness to a potentially fatal dengue hemorrhagic fever, dengue can induce a variety of symptoms. Presently, the globe is being challenged by the untimely identification of dengue infection. Therefore, this review summarizes advances in the detection of dengue from conventional methods (nucleic acid-based, polymerase chain reaction-based, and serological approaches) to novel biosensors. This work illustrates an extensive study of the current designs and fabrication approaches involved in the formation of electrochemical biosensors for untimely identifications of dengue. Additionally, in electrochemical sensing of DENV, we skimmed through significances of biorecognition molecules like lectins, nucleic acid, and antibodies. The introduction of emerging techniques such as the CRISPR/Cas' system and their integration with biosensing platforms has also been summarized. Furthermore, the review revealed the importance of electrochemical approach compared with traditional diagnostic methods.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/genética , Técnicas Eletroquímicas/métodos , Humanos , Dengue/diagnóstico , Dengue/virologia
2.
Life Sci ; 336: 122331, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070863

RESUMO

Despite the effectiveness of vaccination in reducing or eradicating diseases caused by pathogens, there remain certain diseases and emerging infections for which developing effective vaccines is inherently challenging. Additionally, developing vaccines for individuals with compromised immune systems or underlying medical conditions presents significant difficulties. As well as traditional vaccine different methods such as inactivated or live attenuated vaccines, viral vector vaccines, and subunit vaccines, emerging non-viral vaccine technologies, including viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer new strategies to address the existing challenges in vaccine development. These advancements have also greatly enhanced our understanding of vaccine immunology, which will guide future vaccine development for a broad range of diseases, including rapidly emerging infectious diseases like COVID-19 and diseases that have historically proven resistant to vaccination. This review provides a comprehensive assessment of emerging non-viral vaccine production methods and their application in addressing the fundamental and current challenges in vaccine development.


Assuntos
COVID-19 , Doenças Transmissíveis Emergentes , Vacinas de DNA , Vacinas Virais , Humanos , Vacinas Virais/uso terapêutico , Vacinação , COVID-19/prevenção & controle , Doenças Transmissíveis Emergentes/prevenção & controle , Vacinas de Subunidades Antigênicas
3.
Curr Gene Ther ; 23(5): 330-342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37728084

RESUMO

The second most pervasive cancer affecting the survival of women across the world is breast cancer. One of the biggest challenges in breast cancer treatment is the chemoresistance of cancer cells to various medications after some time. Therefore, highly specific blood-based biomarkers are required for early breast cancer diagnosis to overcome chemoresistance and improve patient survival. These days, exosomal miRNAs have attracted much attention as early diagnostic blood-based biomarkers because of their high stability, secretion from malignant tumor cells, and excellent specificity for different breast cancer subtypes. In addition, exosomal miRNAs regulate cell proliferation, invasion, metastasis, and apoptosis by binding to the 3'UTR of their target genes and limiting their production. This review focuses on the functions of exosomal miRNAs in tumorigenesis via targeting multiple signaling pathways as well as chemosensitivity and resistance mechanisms. In addition, the growing pieces of evidence discussed in this review suggest that circulating exosomal miRNAs could be utilized as potential next-generation therapeutic target vehicles in the treatment of breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Regiões 3' não Traduzidas , Apoptose , Carcinogênese
4.
Biotechnol Adv ; 66: 108149, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37030554

RESUMO

Glycosylation-mediated post-translational modification is critical for regulating many fundamental processes like cell division, differentiation, immune response, and cell-to-cell interaction. Alterations in the N-linked or O-linked glycosylation pattern of regulatory proteins like transcription factors or cellular receptors lead to many diseases, including cancer. These alterations give rise to micro- and macro-heterogeneity in tumor cells. Here, we review the role of O- and N-linked glycosylation and its regulatory function in autoimmunity and aberrant glycosylation in cancer. The change in cellular glycome could result from a change in the expression of glycosidases or glycosyltransferases like N-acetyl-glucosaminyl transferase V, FUT8, ST6Gal-I, DPAGT1, etc., impact the glycosylation of target proteins leading to transformation. Moreover, the mutations in glycogenes affect glycosylation patterns on immune cells leading to other related manifestations like pro- or anti-inflammatory effects. In recent years, understanding the glycome to cancer indicates that it can be utilized for both diagnosis/prognosis as well as immunotherapy. Studies involving mass spectrometry of proteome, site- and structure-specific glycoproteomics, or transcriptomics/genomics of patient samples and cancer models revealed the importance of glycosylation homeostasis in cancer biology. The development of emerging technologies, such as the lectin microarray, has facilitated research on the structure and function of glycans and glycosylation. Newly developed devices allow for high-throughput, high-speed, and precise research on aberrant glycosylation. This paper also discusses emerging technologies and clinical applications of glycosylation.


Assuntos
Neoplasias , Humanos , Glicosilação , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Glicosiltransferases/metabolismo , Lectinas/metabolismo , Imunoterapia , Polissacarídeos/química
5.
Vaccines (Basel) ; 10(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560548

RESUMO

Early and effective diagnosis of cancer is decisive for its proper management. In this context biomarker-based cancer diagnosis is budding as one of the promising ways for early detection, disease progression monitoring, and effective cancer therapy. Integration of Biosensing devices with different metallic/nonmetallic nanoparticles offers amplification and multiplexing capabilities for simultaneous detection of cancer biomarkers (CB's). This study provides a comprehensive analysis of the most recent designs and fabrication methodologies designed for developing electrochemical biosensors (EB) for early detection of cancers. The role of biomarkers in cancer therapeutics is also discussed.

6.
Curr Pharm Des ; 28(43): 3478-3485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415093

RESUMO

Colorectal cancer is the second leading cause of cancer deaths worldwide and has engrossed researchers' attention toward its detection and prevention at early stages. Primarily associated with genetic and environmental risk factors, the disease has also shown its emergence due to dysbiosis in microbiota. The microbiota not only plays a role in modulating the metabolisms of metastatic tissue but also has a keen role in cancer therapy. The immune cells are responsible for secreting various chemokines and cytokines, and activating pattern recognition receptors by different microbes can lead to the trail by which these cells regulate cancer. Furthermore, mixed immune reactions involving NK cells, tumor-associated macrophages, and lymphocytes have shown their connection with the microbial counterpart of the disease. The microbes like Bacteroides fragilis, Fusobacterium nucleatum, and Enterococcus faecalis and their metabolites have engendered inflammatory reactions in the tumor microenvironment. Hence the interplay between immune cells and various microbes is utilized to study the changing metastasis stage. Targeting either immune cells or microbiota could not serve as a key to tackling this deadly disorder. However, harnessing their complementation towards the disease can be a powerful weapon for developing therapy and diagnostic/prognostic markers. In this review, we have discussed various immune reactions and microbiome interplay in CRC, intending to evaluate the effectiveness of chemotherapy and immunotherapy and their parallel relationship.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Humanos , Neoplasias Colorretais/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Sistema Imunitário , Microambiente Tumoral
7.
Chemosphere ; 300: 134428, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35395271

RESUMO

The graphene quantum dots (GQDs) was synthesized using potato starch and water by hydrothermal method and further used for reduction of tetracholoroauric acid to form graphene quantum dots-gold (GQDs@AuNPs) nanocomposite. The GQDs/GQDs@AuNPs were analyzed using FTIR, UV-Vis, Flourometry and HR-TEM. The synthesized GQDs@AuNPs were further used for fabrication of cost-effective screen-printed paper electrode (SPPE) based DNA sensor for the detection of O. tsutsugamushi using htrA gene specific 5'NH2 linked DNA probe. Modification of SPPE using GQDs@AuNPs nanocomposite and ssDNA probe was monitored using EIS, FTIR, FE-SEM and AFM. The sensor detection limit (LOD) was assessed as 0.002 ng/µl from the standard calibration curve with the correlation coefficient, R2 = 0.993. The sensitivity of the DNA sensor was calculated as 7700 µA/cm2/ng for ssGDNA of O. tsutsugamushi using cyclic voltammetry. The sensor validation was done using scrub typhus patient's blood DNA samples. The sensor showed good storage stability at 4 °C for six months with just a loss of 12% of the initial current values. The SPPE/DNA sensor developed is very specific, sensitive, stable and detects O. tsutsugamushi in less time.


Assuntos
Grafite , Nanopartículas Metálicas , Nanocompostos , Pontos Quânticos , Tifo por Ácaros , DNA de Cadeia Simples , Ouro , Humanos
8.
Sensors (Basel) ; 21(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202348

RESUMO

The unique structural and electrochemical properties of graphene oxide (GO) make it an ideal material for the fabrication of biosensing devices. Therefore, in the present study, graphene oxide nanoparticles modified paper electrodes were used as a low-cost matrix for the development of an amperometric DNA sensor. The graphene oxide was synthesized using the modified hummers method and drop cast on a screen-printed paper electrode (SPPE) to enhance its electrochemical properties. Further, the GO/SPPE electrode was modified with a 5'NH2 labeled ssDNA probe specific to the htrA gene of Orientia tsutsugamushi using carbodiimide cross-linking chemistry. The synthesized GO was characterized using UV-Vis, FTIR, and XRD. The layer-by-layer modification of the paper electrode was monitored via FE-SEM, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The sensor response after hybridization with single-stranded genomic DNA (ssGDNA) of O. tsutsugamushi was recorded using differential pulse voltammetry (DPV). Methylene blue (1 mM in PBS buffer, pH 7.2) was used as a hybridization indicator and [Fe(CN)6]-3/-4 (2.5 mM in PBS buffer, pH 7.2) as a redox probe during electrochemical measurements. The developed DNA sensor shows excellent sensitivity (1228.4 µA/cm2/ng) and LOD (20 pg/µL) for detection of O. tsutsugamushi GDNA using differential pulse voltammetry (DPV).


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas , Eletrodos
9.
3 Biotech ; 11(5): 212, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33928000

RESUMO

An amperometric biosensor for xanthine was designed, based on covalent immobilization of xanthine oxidase (XO) of Bacillus pumilus RL-2d onto a screen-printed multi-walled carbon nanotubes gold nanoparticle-based electrodes (Nano-Au/c-MWCNT). The carboxyl groups at the electrode surface were activated by the use of 1-Ethyl-3-(3-dimethylaminopropyl carbodiimide) (EDC) and N-hydroxysuccinimide (NHS). The working electrode was then coated with 6 µL of xanthine oxidase (0.273 U/mg protein). The cyclic voltammetry (CV) study was done for the characterization of the sensor using [K3Fe(CN)6] as an artificial electron donor. The sensitivity (S) and the limit of detection (LOD) of the biosensor were 2388.88 µA/cm2/nM (2.388 µA/cm2/µM) and 1.14 nM, respectively. The developed biosensor was used for determination of fish meat freshness.

10.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917354

RESUMO

Leptospirosis is an underestimated tropical disease caused by the pathogenic Leptospira species and responsible for several serious health problems. Here, we aimed to develop an ultrasensitive DNA biosensor for the rapid and on-site detection of the Loa22 gene of Leptospira interrogans using a gold nanoparticle-carbon nanofiber composite (AuN/CNF)-based screen-printed electrode. Cyclic voltammetry and electrochemical impedance were performed for electrochemical analysis. The sensitivity of the sensor was 5431.74 µA/cm2/ng with a LOD (detection limit) of 0.0077 ng/µL using cyclic voltammetry. The developed DNA biosensor was found highly specific to the Loa22 gene of L. interrogans, with a storage stability at 4 °C for 180 days and a 6% loss of the initial response. This DNA-based sensor only takes 30 min for rapid detection of the pathogen, with a higher specificity and sensitivity. The promising results obtained suggest the application of the developed sensor as a point of care device for the diagnosis of leptospirosis.


Assuntos
Leptospira interrogans , Leptospirose , Nanopartículas Metálicas , Ouro , Humanos , Leptospira interrogans/genética , Leptospirose/diagnóstico , Proteínas de Membrana
11.
ACS Appl Bio Mater ; 4(5): 3962-3984, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006817

RESUMO

The present review is intended to describe bloodstream infections (BSIs), the major pathogens responsible for BSIs, conventional tests and their limitations, commercially available methods used, and the aptamer and nanomaterials-based approaches developed so far for the detection of BSIs. The advantages associated with aptamers and the aptamer-based sensors, the comparison between the aptamers and the antibodies, and the various types of aptasensors developed so far for the detection of bloodstream infections have been described in detail in the present review. Also, the future outlook and roadmap toward aptamer-based sensors and the challenges associated with the aptamer development have also been concluded in this review.


Assuntos
Aptâmeros de Nucleotídeos/química , Materiais Biocompatíveis/química , Técnicas Biossensoriais , Sepse/diagnóstico , Antibacterianos/química , Antibacterianos/uso terapêutico , Aptâmeros de Nucleotídeos/síntese química , Materiais Biocompatíveis/síntese química , Humanos , Teste de Materiais , Tamanho da Partícula , Sepse/tratamento farmacológico
12.
3 Biotech ; 10(10): 446, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33014689

RESUMO

A novel approach has been developed for the detection of 56 kDa tissue-specific antigen (TSA) gene of Orientia tsutsugamushi a causative agent of scrub typhus disease. The approach was developed by immobilization of 5' NH2 labeled ssDNA probe selective to 56 kDa TSA gene, to the surface of AuNPs/CNF modified screen-printed electrode. An electrochemical response was recorded with single stranded genomic DNA (ssDNA) of O. tsutsugamushi isolated from patient sample, using cyclic voltammetry and electrochemical impedance spectroscopy. The electrode surface was characterized by Field-Emission Scanning electron microscope (FE-SEM), Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy at each step of fabrication. The DNA biosensor shows optimum response within 50-60 s at room temperature (25 ± 3 °C). The sensor shows higher sensitivity [7849 (µA/cm2)/ng DNA], fast response time (60 s), wider linear range (0.04-2.6 ng) with limit of detection of 0.02 ng/µl of ssDNA sample.

13.
Animals (Basel) ; 10(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081121

RESUMO

Progress in the medical profession is determined by the achievements and effectiveness of new antibiotics in the treatment of microbial infections. However, the development of multiple-drug resistance in numerous bacteria, especially Gram-negative bacteria, has limited the treatment options. Due to this resistance, the resurgence of cyclic polypeptide drugs like colistin remains the only option. The drug, colistin, is a well-known growth inhibitor of Gram-negative bacteria like Acinetobacter baumanni, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Technological advancements have uncovered the role of the mcr-1(mobilized colistin resistance) gene, which is responsible for the development of resistance in Gram-negative bacteria, which make them distinct from other bacteria without this gene. Additionally, food animals have been determined to be the reservoir for colistin resistance microbes, from which they spread to other hosts. Due to the adverse effects of colistin, many developed countries have prohibited its usage in animal foods, but developing countries are still using colistin in animal food production, thereby imposing a major risk to the public health. Therefore, there is a need for implementation of sustainable measures in livestock farms to prevent microbial infection. This review highlights the negative effects (increased resistance) of colistin consumption and emphasizes the different approaches used for detecting colistin in animal-based foods as well as the challenges associated with its detection.

14.
3 Biotech ; 10(9): 396, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32834918

RESUMO

Scrub typhus is a mite-borne, acute febrile illness caused by the bacterium Orientia tsutsugamushi. It is a re-emerging infectious disease of the tsutsugamushi triangle. Scrub typhus is transmitted through bites of contaminated chiggers (larval stage). Diagnosis of scrub typhus is challenging as its symptoms mimic with other acute febrile illnesses. Several methods are effectual for diagnosis of scrub typhus that includes enzyme-linked immunosorbent assay (ELISA), immunofluorescence assay (IFA), immunochromatographic test (ICT), Weil-Felix, polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP). Weil-Felix test was initially used for the diagnosis of scrub typhus in underdeveloped countries but not preferred due to a lack of both specificity and sensitivity. Other immuno-based methods like IFA and ELISA are most outrank for detection of scrub typhus due to their higher sensitivity and specificity, but not vigorous to lay bare the infection at early stages and need the convalescent sampling for verification of positive samples. On another deed, PCR based methods becoming acceptable over era due to its dexterity of early-stage diagnosis with higher specificity and sensitivity but lack its applicability in circumstances of scrub typhus due to the variegated genetic makeup of Orientia tsutsugamushi among its serotypes. The present review focused on various detection methods along with their advantages and disadvantages used in the diagnosis of scrub typhus. A comparison between available methods of diagnosis with challenges in the detection of scrub typhus is also summarized.

15.
3 Biotech ; 10(7): 327, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32656060

RESUMO

The electrochemical DNA biosensor has been developed for the detection of Listeria monocytogenes in raw milk samples. The electrochemical studies of the developed biosensor was recorded by cyclic voltammetry (CV) and electrochemical impedance (EI) using methylene blue (MB) and potassium ferricyanide K3Fe(CN)- 6 as redox indicators. The selectivity of the developed biosensor was demonstrated using complementary and mismatch oligonucleotide sequences. The sensitivity (S) of the developed sensor was recorded as 3461 (µA/cm2)/ng and limit of detection (LOD) was found to be 82 fg/6 µl with the regression coefficient (R 2) 0.941 using CV. The sensor was characterized by field emission scanning electron microscopy (FE-SEM). The electrode was found to be stable for six months, with only 10% loss in the initial CV current.

16.
Sensors (Basel) ; 20(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244581

RESUMO

The intake of microbial-contaminated food poses severe health issues due to the outbreaks of stern food-borne diseases. Therefore, there is a need for precise detection and identification of pathogenic microbes and toxins in food to prevent these concerns. Thus, understanding the concept of biosensing has enabled researchers to develop nanobiosensors with different nanomaterials and composites to improve the sensitivity as well as the specificity of pathogen detection. The application of nanomaterials has enabled researchers to use advanced technologies in biosensors for the transfer of signals to enhance their efficiency and sensitivity. Nanomaterials like carbon nanotubes, magnetic and gold, dendrimers, graphene nanomaterials and quantum dots are predominantly used for developing biosensors with improved specificity and sensitivity of detection due to their exclusive chemical, magnetic, mechanical, optical and physical properties. All nanoparticles and new composites used in biosensors need to be classified and categorized for their enhanced performance, quick detection, and unobtrusive and effective use in foodborne analysis. Hence, this review intends to summarize the different sensing methods used in foodborne pathogen detection, their design, working principle and advances in sensing systems.


Assuntos
Bactérias/isolamento & purificação , Técnicas Biossensoriais , Doenças Transmitidas por Alimentos/diagnóstico , Nanotecnologia/tendências , Bactérias/patogenicidade , Doenças Transmitidas por Alimentos/microbiologia , Grafite/química , Humanos , Nanopartículas/química , Nanoestruturas/química , Nanotubos de Carbono/química
17.
Front Biosci (Landmark Ed) ; 25(9): 1655-1681, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114449

RESUMO

Leptospirosis can be found in virtually all tropical and temperate areas of the world and is presumed to be the widely spread zoonotic infection in the world. Because of the variety of clinical symptoms seen in the symptomatic cases, leptospirosis at its onset is often misdiagnosed as aseptic meningitis, influenza, hepatic disease or fever (pyrexia) of unknown origin. The disease has been widely spread, ranging from subclinical infection to a severe syndrome of multiorgan infection with high mortality. It is an occupational hazard for people who work outdoors or with animals, such as rice and sugar-cane field workers, farmers, sewer workers, veterinarians, dairy workers, and military personnel. Various diagnostic methods have been developed for the diagnosis of leptospirosis that includes direct examination; serology and molecular based techniques, but have various shortcomings, so there is a need to develop an effective surveillance system to monitor the trends of disease to control this life-threatening zoonosis. Now a day's biosensor based technology becomes an excellent platform in the field of diagnostics due to their better sensitivity and specificity. So different types of biosensors such as enzyme-based, tissue-based, immunosensor, DNA biosensors, thermal and piezoelectric biosensors have been discussed here to highlight their indispensable applications in different fields. In this review, we will examine the current utilization of functionalized detection methods with other synthetic mixes for the development of biosensor prompting to the location of particular analytes with low discovery cut-off and quick reaction.


Assuntos
Zoonoses Bacterianas/diagnóstico , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Leptospira/genética , Leptospirose/diagnóstico , Animais , Zoonoses Bacterianas/microbiologia , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Leptospira/fisiologia , Leptospirose/microbiologia , Microscopia de Contraste de Fase/métodos , Reação em Cadeia da Polimerase/métodos
18.
J Biosci Bioeng ; 129(4): 441-446, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31786101

RESUMO

In this report, a LipL32 gene based nanofabricated electrochemical sensor for the detection of Leptospira interrogans has been developed using carboxylated multiwalled carbon nanotubes with gold nanoparticles (c-MWCNTs/nanoAu) electrode and graphene quantum dots (GQDs). The c-MWCNTs/nanoAu electrode was linked to GQDs using 4-aminothiophenol (ATP). The surface modifications on the electrode surface were delineated using Raman spectroscopy and field emission scanning electron microscopy (FE-SEM). 5'-Amino (NH2) labeled single stranded DNA (ssDNA) probe was immobilized on the surface of c-MWCNTs/nanoAu/ATP/GQD composite electrode. The electrochemical changes of the developed sensor after hybridization with single stranded complementary DNA of L. interrogans were analyzed by differential pulse voltammetry (DPV) using 1 mM methylene blue. The sensor showed good linearity with complementary ssDNA concentration ranging from 0.37 to 12 ng/µl. The sensor exhibited high specificity to L. interrogans and showed good reproducibility when stored at 4°C.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Técnicas Biossensoriais/métodos , Ouro/química , Leptospira interrogans/isolamento & purificação , Lipoproteínas/análise , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Compostos de Anilina/química , Proteínas da Membrana Bacteriana Externa/genética , DNA de Cadeia Simples/análise , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Lipoproteínas/genética , Nanoestruturas/química , Nanotubos de Carbono/química , Hibridização de Ácido Nucleico , Pontos Quânticos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Compostos de Sulfidrila/química
19.
3 Biotech ; 9(11): 425, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31696030

RESUMO

In this study, a DNA-based nanosensor using specific NH2 labeled single standard probe was developed against stn gene of Salmonella enterica in milk samples. The single-stranded DNA probe was immobilized on carboxylated multiwalled carbon nanotube and gold nanoparticle (c-MWCNT/AuNP) electrode using 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC): N-hydroxy succinimide-based cross-linking chemistry. Electrochemical characterization was performed using cyclic voltammetry (CV) and Differential Pulse Voltammetry (DPV) techniques. The electrode surface at each step of fabrication was characterized using scanning electron microscopy. The sensitivity and lower limit of detection were found to be 728.42 (µA/cm2)/ng and 1.8 pg/6 µl (0.3 pg/ml), respectively, with regression coefficient (R 2) of 0.843 using DPV. The sensor was further validated using raw and artificial milk samples, and results were compared with conventional methods of detection. The developed sensor was found to be highly sensitive and stable up to 6 months, with only 10% loss of initial peak current in CV analysis on storage at 4 °C.

20.
3 Biotech ; 9(7): 284, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31245248

RESUMO

An optimized DNA-based bioassay for Leptospira interrogans detection has been developed. Electrochemical studies of the developed biosensor were done using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Surface characterization of the biosensor was done using scanning electron microscopy (SEM). The biosensor showed specificity to L. interrogans as determined by specificity studies. The sensitivity of the biosensor was 264.5 µA/cm2/ng and lower limit of detection (LOD) was 0.015 ng/6 µl using CV. The biosensor was also validated with serum samples spiked with single-stranded leptospiral DNA. The developed biosensor also showed good stability for a period of 6 months at 4 °C as shown by the DPV analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...