Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36670998

RESUMO

This study investigated the influence of dietary astaxanthin (AX) on glucose and lipid metabolism in rainbow trout liver. Two iso-nitrogenous and iso-lipidic diets were tested for 12 weeks in rainbow trout with an initial mean weight of 309 g. The S-ASTA diet was supplemented with 100 mg of synthetic AX per kg of feed, whereas the control diet (CTRL) had no AX. Fish fed the S-ASTA diet displayed lower neutral and higher polar lipids in the liver, associated with smaller hepatocytes and lower cytoplasm vacuolization. Dietary AX upregulated adipose triglyceride lipase (atgl), hormone-sensitive lipase (hsl2) and 1,2-diacylglycerol choline phosphotransferase (chpt), and downregulated diacylglycerol acyltransferase (dgat2), suggesting the AX's role in triacylglycerol (TAG) turnover and phospholipid (PL) synthesis. Dietary AX may also affect beta-oxidation with the upregulation of carnitine palmitoyltransferase 1 (cpt1α2). Although hepatic cholesterol levels were not affected, dietary AX increased gene expression of sterol regulatory element-binding protein 2 (srebp2). Dietary AX upregulated the expression of 6-phosphogluconate dehydrogenase (6pgdh) and downregulated pyruvate kinase (pkl). Overall, results suggest that dietary AX modulates the oxidative phase of the pentose phosphate pathway and the last step of glycolysis, affecting TAG turnover, ß-oxidation, PL and cholesterol synthesis in rainbow trout liver.

2.
Anim Reprod Sci ; 241: 106989, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35598363

RESUMO

Genetic selection programmes in gilthead seabream mainly focus on traits related to growth, disease resistance, skeletal anomalies, or fillet quality. However, the effect of selection for growth on the reproductive performance of seabream broodstock has not received much attention. The present study aimed to determine the effect of selection for growth traits, high (HG) or low (LG) growth, and broodstock feeding with fish oil (FO diet) or rapeseed oil (RO diet) as main lipid sources, on reproductive performance of gilthead seabream. For the first part of the spawning season (Phase I) HG and LG broodstock were fed a commercial diet and the HG broodstock produced a higher number of larvae and higher viable eggs, hatching and larval survival rates than LG broodstock, affecting egg fatty acid profiles. For the second part of the study (Phase II) broodstock were fed one of the two diets containing FO or RO. Fecundity in terms of viable eggs, hatchlings, and larvae produced, as well as fertilization rates, were improved in HG broodstock. Some fatty acids such as 18:0, 20:2n-6, 20:3n-3 or EPA/ARA were also affected by the growth selection. According to the two-way ANOVA analysis, feeding the RO diet did not significantly affect fecundity parameters, but slightly reduced fertilization and hatching rates in HG broodstock. Nevertheless, HG broodstock showed better spawning quality parameters than LG broodstock, even when they were fed the RO diet. Egg fatty acid profiles reflected diet composition, although DHA contents were not affected. In conclusion, broodstock selected for high growth had a positive effect on broodstock performance, and FO replacement by RO did not markedly affect reproduction providing that fatty acid contents were sufficient to fulfill the essential fatty acid requirements of gilthead seabream broodstock.


Assuntos
Dourada , Ração Animal/análise , Animais , Dieta/veterinária , Gorduras na Dieta , Ácidos Graxos , Larva , Óvulo , Reprodução , Dourada/genética
3.
Br J Nutr ; 127(1): 23-34, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33658100

RESUMO

This study evaluated how different forms of selenium (Se) supplementation into rainbow trout broodstock diets modified the one-carbon metabolism of the progeny after the beginning of exogenous feeding and followed by hypoxia challenge. The progeny of three groups of rainbow trout broodstock fed either a control diet (Se level: 0·3 µg/g) or a diet supplemented with inorganic sodium selenite (Se level: 0·6 µg/g) or organic hydroxy-selenomethionine (Se level: 0·6 µg/g) was cross-fed with diets of similar Se composition for 11 weeks. Offspring were sampled either before or after being subjected to an acute hypoxic stress (1·7 mg/l dissolved oxygen) for 30 min. In normoxic fry, parental Se supplementation allowed higher glutathione levels compared with fry originating from parents fed the control diet. Parental hydroxy-selenomethionine treatment also increased cysteine and cysteinyl-glycine concentrations in fry. Dietary Se supplementation decreased glutamate-cysteine ligase (cgl) mRNA levels. Hydroxy-selenomethionine feeding also lowered the levels of some essential free amino acids in muscle tissue. Supplementation of organic Se to parents and fry reduced betaine-homocysteine S-methyltransferase (bhmt) expression in fry. The hypoxic stress decreased whole-body homocysteine, cysteine, cysteinyl-glycine and glutathione levels. Together with the higher mRNA levels of cystathionine beta-synthase (cbs), a transsulphuration enzyme, this suggests that under hypoxia, glutathione synthesis through transsulphuration might have been impaired by depletion of a glutathione precursor. In stressed fry, S-adenosylmethionine levels were significantly decreased, but S-adenosylhomocysteine remained stable. Decreased bhmt and adenosylmethionine decarboxylase 1a (amd1a) mRNA levels in stressed fry suggest a nutritional programming by parental Se also on methionine metabolism of rainbow trout.


Assuntos
Oncorhynchus mykiss , Selênio , Animais , Antioxidantes/metabolismo , Carbono/metabolismo , Cisteína , Dieta/veterinária , Suplementos Nutricionais , Glutationa/metabolismo , Hipóxia , Oncorhynchus mykiss/metabolismo , RNA Mensageiro/metabolismo , Selênio/metabolismo , Selenometionina/metabolismo
5.
Animals (Basel) ; 11(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34944386

RESUMO

The authors found some omissions and errors in the original paper [...].

6.
Animals (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34679898

RESUMO

The supplementation of fish diets with OH-SeMet reduces oxidative stress and modulates immune response against bacterial infection. However, despite the importance of essential polyunsaturated fatty acids in fish nutrition and their high risk of oxidation, the potential protective effect of OH-SeMet on these essential fatty acids has not been studied in detail. Moreover, while viral infection is very relevant in seabream production, no studies have focused the Se effects against viral infection. The aim of the present study was to assess the impact of dietary supplementation with OH-SeMet on gilthead seabream fatty acid profiles, growth performance and response against viral infection. Gilthead seabream juveniles (21.73 ± 0.27 g) were fed for 91 days with three experimental diets, a control diet without supplementation of Se (0.29 mg Se kg diet-1) and two diets supplemented with OH-SeMet (0.52 and 0.79 mg Se kg diet-1). A crowding stress test was performed at week 7 and an anti-viral response challenge were conducted at the end of the feeding trial. Selenium, proximate and fatty acid composition of diets and body tissues were analyzed. Although fish growth was not affected, elevation in dietary Se proportionally raised Se content in body tissues, increased lipid content in the whole body and promoted retention and synthesis of n-3 polyunsaturated fatty acids. Specifically, a net production of DHA was observed in those fish fed diets with a higher Se content. Additionally, both monounsaturated and saturated fatty acids were significantly reduced by the increase in dietary Se. Despite the elevation of dietary Se to 0.79 mg kg-1 not affecting basal cortisol levels, 2 h post-stress plasma cortisol levels were markedly increased. Finally, at 24 h post-stimulation, dietary OH-SeMet supplementation significantly increased the expression of the antiviral response myxovirus protein gene, showing, for the first time in gilthead seabream, the importance of dietary Se levels on antiviral defense.

8.
Animals (Basel) ; 11(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34573676

RESUMO

Aquatic animals have unique physiological mechanisms to absorb and retain minerals from their diets and water. Research and development in the area of mineral nutrition of farmed fish and crustaceans have been relatively slow and major gaps exist in the knowledge of trace element requirements, physiological functions and bioavailability from feed ingredients. Quantitative dietary requirements have been reported for three macroelements (calcium, phosphorus and magnesium) and six trace minerals (zinc, iron, copper, manganese, iodine and selenium) for selected fish species. Mineral deficiency signs in fish include reduced bone mineralization, anorexia, lens cataracts (zinc), skeletal deformities (phosphorus, magnesium, zinc), fin erosion (copper, zinc), nephrocalcinosis (magnesium deficiency, selenium toxicity), thyroid hyperplasia (iodine), muscular dystrophy (selenium) and hypochromic microcytic anemia (iron). An excessive intake of minerals from either diet or gill uptake causes toxicity and therefore a fine balance between mineral deficiency and toxicity is vital for aquatic organisms to maintain their homeostasis, either through increased absorption or excretion. Release of minerals from uneaten or undigested feed and from urinary excretion can cause eutrophication of natural waters, which requires additional consideration in feed formulation. The current knowledge in mineral nutrition of fish is briefly reviewed.

9.
Animals (Basel) ; 11(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671379

RESUMO

Genetic selection in gilthead seabream (GSB), Sparus aurata, has been undertaken to improve the growth, feed efficiency, fillet quality, skeletal deformities and disease resistance, but no study is available to delineate the effect of genetic selection for growth trait on GSB reproductive performance under mass spawning condition. In this study, high growth (HG) or low growth (LG) GSB broodstock were selected to evaluate the sex steroid hormones, sperm, egg quality and reproductive performance under different feeding regime of commercial diet or experimental broodstock diet containing either fish oil (FO) or vegetable oil (VO) based diet. Under commercial diet feeding phase, broodstock selected for either high growth or low growth did not show any significant changes in the egg production per kg female whereas egg viability percentage was positively (p = 0.014) improved by the high growth trait broodstock group. The experimental diet feeding results revealed that both growth trait and dietary fatty acid composition influenced the reproductive performance of GSB broodstock. In the experimental diet feeding phase, we observed high growth trait GSB males produced a higher number of sperm cells (p < 0.001) and also showed a higher sperm motility (p = 0.048) percentage. The viable egg and larval production per spawn per kg female were significantly improved by the broodstock selected for high growth trait and fed with fish oil-based diet. This present study results signifies that gilthead seabream broodstock selected on growth trait could have positive role in improvement of sperm and egg quality to produce viable progeny.

10.
Metallomics ; 13(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33595655

RESUMO

In relation to the decrease of selenium (Se) content in aquafeeds, the impact of level and form of parental and dietary Se supplementation was investigated in rainbow trout fry using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS) bioimaging. The offspring of rainbow trout broodstock, fed either a control diet without any Se supplementation (0.3 mg Se/kg diet) or a diet supplemented with Se (0.6 mg Se/kg diet) either as sodium selenite or hydroxy-selenomethionine, were sampled at swim-up fry stage or after 11 weeks of cross-feeding. Total body Se levels were influenced by parental Se nutrition in swim-up fry and by direct Se feeding in 11-week fry with higher levels in the Se-supplemented groups compared with the control and the highest levels in the hydroxy-selenomethionine treatment. The Se retention was lower for dietary sodium selenite. Selenomethionine levels increased when Se was provided as hydroxy-selenomethionine. LA-ICP MS maps revealed yolk in swim-up fry and intestine, liver, and kidney in 11-week fed fry as tissues with high Se abundance. In swim-up fry, muscle Se was the highest abundant when parents were fed hydroxy-selenomethionine. In 11-week fed fry, muscle Se abundance was higher in the head part of fry fed both Se-supplemented diets, but only in the tail part of fry fed hydroxy-selenomethionine. Liver Se abundance was higher in fry fed sodium selenite compared with the control diet supporting the hypothesis that tissue Se distribution can be influenced by parental and dietary Se forms and levels.


Assuntos
Suplementos Nutricionais/análise , Oncorhynchus mykiss/metabolismo , Selênio/análise , Ração Animal/análise , Animais , Aquicultura , Feminino , Masculino , Espectrometria de Massas , Selênio/metabolismo , Selenometionina/análise , Selenometionina/metabolismo
11.
J Exp Biol ; 223(Pt 23)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33077642

RESUMO

Environmental factors such as nutritional interventions during early developmental stages affect and establish long-term metabolic changes in all animals. Diet during the spawning period has a nutritional programming effect in offspring of gilthead seabream and affects long-term metabolism. Studies showed modulation of genes such as fads2, which is considered to be a rate-limiting step in the synthesis of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). However, it is still unknown whether this adaptation is related to the presence of precursors or to limitations in the pre-formed products, n-3 LC-PUFA, contained in the diets used during nutritional programming. This study investigated the combined effects of nutritional programming on Sparusaurata through broodstock diets during the spawning period and in broodfish showing higher or lower fads2 expression levels in the blood after 1 month of feeding with a diet containing high levels of plant protein sources and vegetable oils (VM/VO). Broodfish showing high fads2 expression had a noticeable improvement in spawning quality parameters as well as in the growth of 6 month old offspring when challenged with a high VM/VO diet. Further, nutritional conditioning with 18:3n-3-rich diets had an adverse effect in comparison to progeny obtained from fish fed high fish meal and fish oil (FM/FO) diets, with a reduction in growth of juveniles. Improved growth of progeny from the high fads2 broodstock combined with similar muscle fatty acid profiles is also an excellent option for tailoring and increasing the flesh n-3 LC-PUFA levels to meet the recommended dietary allowances for human consumption.


Assuntos
Dourada , Ração Animal/análise , Animais , Dieta/veterinária , Ácidos Graxos Dessaturases/genética , Ácidos Graxos , Óleos de Peixe , Humanos , Lactente , Fígado , Ácido alfa-Linolênico
12.
Sci Rep ; 10(1): 15547, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968090

RESUMO

Previous studies have shown that it is possible to nutritionally program gilthead seabream offspring through fish oil (FO) replacement by vegetable oils (VO) in the broodstock diet, to improve their ability to grow fast when fed low fish meal (FM) and FO diets during grow-out phase. However, in those studies broodstock performance was reduced by the VO contained diet. Therefore, the present study aimed to determine if it is possible to replace FO by a mixture of FO and rapeseed oil (RO) with a specific fatty acid profile in broodstock diets, without altering gilthead seabream broodstock reproductive performance. Besides, the study also aimed to evaluate the reproductive performance of broodstock with different expression of fatty acid desaturase 2 gene (fads2) a key enzyme in synthesis of long chain polyunsaturated fatty acids. For that purpose, broodfish having either a high (HD) or low (LD) expression of fads2 were fed for three months during the spawning season with two diets containing different fatty acid profiles and their effects on reproductive hormones, fecundity, sperm and egg quality, egg biochemical composition and fads2 expression were studied. The results showed that blood fads2 expression in females, which tended to be higher than in males, was positively related to plasma 17ß-estradiol levels. Moreover, broodstock with high blood fads2 expression showed a better reproductive performance, in terms of fecundity and sperm and egg quality, which was correlated with female fads2 expression. Our data also showed that it is feasible to reduce ARA, EPA and DHA down to 0.43, 6.6 and 8.4% total fatty acids, respectively, in broodstock diets designed to induce nutritional programming effects in the offspring without adverse effects on spawning quality. Further studies are being conducted to test the offspring with low FM and FO diets along life span.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos/metabolismo , Reprodução/genética , Dourada/genética , Ração Animal , Animais , Gorduras Insaturadas na Dieta/metabolismo , Ácidos Graxos/genética , Feminino , Óleos de Peixe/genética , Óleos de Peixe/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Dourada/crescimento & desenvolvimento , Dourada/metabolismo
13.
Life (Basel) ; 10(7)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707702

RESUMO

The principle aim of this study is to elucidate the relationship between the fatty acid desaturase 2 gene (fads2) expression pattern in peripheral blood cells (PBCs) and liver of gilthead seabream (GSB), Sparus aurata broodstock in order to determine the possible use of fads2 expression as a potential biomarker for the selection of broodstock. This selection could be utilized for breeding programs aiming to improve reproduction, health, and nutritional status. Passive Integrated Transponder (PIT)-tagged GSB broodstock (Male-1.22 ± 0.20 kg; 44.8 ± 2 cm and female-2.36 ± 0.64 kg; 55.1 cm) were fed a diet containing low levels of fish meal and fish oil (EPA 2.5; DHA 1.7 and n-3 LC-PUFA 4.6% TFA) for one month. After the feeding period, fads2 expression in PBCs and liver of both male and female broodstock were highly significantly correlated (r = 0.89; p < 0.001). Additionally, in male broodstock, liver fads2 expression was significantly correlated (p < 0.05) to liver contents in 16:0 (r = 0.95; p = 0.04) and total saturates (r = 0.97; p = 0.03) as well as to 20:3n-6/20:2n-6 (r = 0.98; p = 0.02) a Fads2 product/precursor ratio. Overall, we found a positive and significant correlation between fads2 expression levels in the PBCs and liver of GSB broodstock. PBCs fads2 expression levels indicate a strong potential for utilization as a non-invasive method to select animals having increased fatty acid bioconversion capability, better able to deal with diets free of fish meal and fish oil.

14.
Life (Basel) ; 10(8)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722369

RESUMO

Selenium is an essential micronutrient and its metabolism is closely linked to the methionine cycle and transsulfuration pathway. The present study evaluated the effect of two different selenium supplements in the diet of rainbow trout (Onchorhynchus mykiss) broodstock on the one-carbon metabolism and the hepatic DNA methylation pattern in the progeny. Offspring of three parental groups of rainbow trout, fed either a control diet (NC, basal Se level: 0.3 mg/kg) or a diet supplemented with sodium selenite (SS, 0.8 mg Se/kg) or hydroxy-selenomethionine (SO, 0.7 mg Se/kg), were collected at swim-up fry stage. Our findings suggest that parental selenium nutrition impacted the methionine cycle with lower free methionine and S-adenosylmethionine (SAM) and higher methionine synthase (mtr) mRNA levels in both selenium-supplemented treatments. DNA methylation profiling by reduced representation bisulfite sequencing (RRBS) identified differentially methylated cytosines (DMCs) in offspring livers. These DMCs were related to 6535 differentially methylated genes in SS:NC, 6890 in SO:NC and 7428 in SO:SS, respectively. Genes with the highest methylation difference relate, among others, to the neuronal or signal transmitting and immune system which represent potential targets for future studies.

15.
Free Radic Biol Med ; 155: 99-113, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417385

RESUMO

Selenium (Se) deficiency is a problem widely encountered in humans and terrestrial livestock production with increasing attention also in aquaculture. Se supports the antioxidant system, which becomes especially important during stressful conditions. In the present study, the effect of Se-supplementation in broodstock and fry diets on the performance and antioxidant metabolism of rainbow trout fry under acute hypoxia was investigated. Rainbow trout broodstock were fed plant-ingredient based diets either without any Se-supplementation (Se level: 0.3 mg/kg) or supplemented with Se supplied as sodium selenite or as hydroxy-selenomethionine (Se level: 0.6 mg/kg respectively) for 6 months prior to spawning. The progenies were subdivided into three triplicate feeding groups and fed diets with similar Se levels compared to the parental diets, resulting in a 3x3 factorial design. After 11 weeks of feeding, the fry were either sampled or subjected to a hypoxic stress challenge. One hundred fish were transferred to tanks containing water with a low oxygen level (1.7 ± 0.2 ppm) and monitored closely for 30 min. When a fish started to faint it was recorded and transferred back to normoxic water. Direct fry feeding of the hydroxy-selenomethionine supplemented diet improved the resistance towards the hypoxic stress. On the contrary, fry originating from parents fed Se-supplemented diets showed a lower stress resistance compared to fry originating from parents fed the control diet. Fry subjected to hypoxia showed elevated oxidative stress with reduced glutathione (GSH) levels and increased isoprostanes (IsoP) and phytoprostanes (PhytoP) levels produced by lipid peroxidation of polyunsaturated fatty acids (PUFA), arachidonic and α-linolenic acids respectively. Increased mRNA expression of transcription factors (nrf2, nfκb, keap1X2) and decreased mRNA expression of antioxidant enzymes (trxr, sod, gstπ) indicated a transcriptional regulation of the antioxidant response. In stressed fry, the mRNA expression of several antioxidant genes including gr, msr and gstπ was found to be higher when fed the control diet compared to the sodium selenite treatment, with a contrary effect for parental and direct Se nutrition on gpx. The long-term parental effect becomes of greater importance in stressed fry, where more than half of the genes were significantly higher expressed in the control compared to the selenite supplemented group.


Assuntos
Oncorhynchus mykiss , Selênio , Animais , Antioxidantes , Dieta , Suplementos Nutricionais , Humanos , Hipóxia , Estresse Oxidativo , Selênio/farmacologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-31923629

RESUMO

Two experiments were conducted to test if manipulations of the Arginine-Nitric oxide pathway during the early life of rainbow trout would act on its early myogenic process. In experiment 1, trout embryos were immersed at 72° days post-fertilization (°dpf) or 104°dpf in water alone (control treatment, C) or containing 2 mM/L L-Arg (treatment A) or 1 mM/L of L-NAME, a NOS inhibitor (treatment N). We observed the beginning of expression of myf5 and fmhc genes at 72°dpf and 96°dpf, respectively. "A" treatment doubled the free Arg content of eggs but did not affect either the pattern of expression of myf5 and fmhc, nor white muscle cross-sectional area and number of white muscle fibres at hatching, nor embryo survival and fry growth. "N" treatment also did not affect these markers. In experiment 2, trout fry were fed from first feeding onwards and during 20 days either a control diet (C) or the same diet supplemented with L-NAME (0.1 g/100 g diet, N-diet). In C-fed fry, distribution of a single meal after overnight fasting induced changes in pcna, myod1, myog, fmhc, inos, nnos and ctsd gene expressions. N-feeding decreased fry growth but did not change their growth trajectory or survival. Twenty days of N-feeding led, compared to C-feeding, to changes in kinetics of transcription of pcna, myod1, myog, fmhc, inos, nnos, ctsd genes and to decreased white muscle cross-sectional area, total number of white muscle fibres, and number of large muscle fibres. L-NAME feeding thus decreased fry muscle growth by altering both hyperplasia and hypertrophy.


Assuntos
Arginina/farmacologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Oncorhynchus mykiss/fisiologia , Animais , Embrião não Mamífero/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento
17.
Annu Rev Anim Biosci ; 7: 221-243, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30418803

RESUMO

Feed protein supplements are one of the most expensive and limiting feed ingredients. This review offers a comprehensive analysis of how the expected expansion of animal production, driven by the rising world population and living standards for more animal-sourced foods, is creating a global shortage of feed protein supply. Because ruminants, chickens, and pigs contribute to 96% of the global supply of animal protein and aquaculture is growing fast, means of meeting the feed protein requirements of these species are elaborated. Geographic variation and interdependence among China, Europe, and North America in the demand and supply of feed protein are compared. The potential and current state of exploration into alternative feed proteins, including microalgae, insects, single-cell proteins, and coproducts, are highlighted. Strategic innovations are proposed to upgrade feed protein processing and assessment, improve protein digestion by exogenous enzymes, and genetically select feed-efficient livestock breeds. An overall successful and sustainable solution in meeting global feed protein demands will lead to a substantial net gain of human-edible animal protein with a minimal environmental footprint.


Assuntos
Ração Animal , Galinhas/crescimento & desenvolvimento , Proteínas Alimentares , Suplementos Nutricionais , Abastecimento de Alimentos , Ruminantes/crescimento & desenvolvimento , Suínos/crescimento & desenvolvimento , Proteínas Animais da Dieta , Animais , Dieta/veterinária , Meio Ambiente , Humanos , Gado
19.
BMC Genomics ; 17: 449, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296167

RESUMO

BACKGROUND: The achievement of sustainable feeding practices in aquaculture by reducing the reliance on wild-captured fish, via replacement of fish-based feed with plant-based feed, is impeded by the poor growth response seen in fish fed high levels of plant ingredients. Our recent strategy to nutritionally program rainbow trout by early short-term exposure to a plant-based (V) diet versus a control fish-based (M) diet at the first-feeding fry stage when the trout fry start to consume exogenous feed, resulted in remarkable improvements in feed intake, growth and feed utilization when the same fish were challenged with the diet V (V-challenge) at the juvenile stage, several months following initial exposure. We employed microarray expression analysis at the first-feeding and juvenile stages to deduce the mechanisms associated with the nutritional programming of plant-based feed acceptance in trout. RESULTS: Transcriptomic analysis was performed on rainbow trout whole fry after 3 weeks exposure to either diet V or diet M at the first feeding stage (3-week), and in the whole brain and liver of juvenile trout after a 25 day V-challenge, using a rainbow trout custom oligonucleotide microarray. Overall, 1787 (3-week + Brain) and 924 (3-week + Liver) mRNA probes were affected by the early-feeding exposure. Gene ontology and pathway analysis of the corresponding genes revealed that nutritional programming affects pathways of sensory perception, synaptic transmission, cognitive processes and neuroendocrine peptides in the brain; whereas in the liver, pathways mediating intermediary metabolism, xenobiotic metabolism, proteolysis, and cytoskeletal regulation of cell cycle are affected. These results suggest that the nutritionally programmed enhanced acceptance of a plant-based feed in rainbow trout is driven by probable acquisition of flavour and feed preferences, and reduced sensitivity to changes in hepatic metabolic and stress pathways. CONCLUSIONS: This study outlines the molecular mechanisms in trout brain and liver that accompany the nutritional programming of plant-based diet acceptance in trout, reinforces the notion of the first-feeding stage in oviparous fish as a critical window for nutritional programming, and provides support for utilizing this strategy to achieve improvements in sustainability of feeding practices in aquaculture.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Oncorhynchus mykiss/fisiologia , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Estudos de Associação Genética , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes , Transcriptoma
20.
PLoS One ; 11(2): e0149378, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26895186

RESUMO

Responses in micro-mineral metabolism to changes in dietary ingredient composition and inclusion of a micro-mineral premix (Fe, Cu, Mn, Zn and Se) were studied in rainbow trout. In a 2 x 2 factorial design, triplicate groups of rainbow trout (initial weight: 20 g) were fed over 12 weeks at 17°C a fishmeal-based diet (M) or a plant-ingredient based diet (V), with or without inclusion of a mineral premix. Trout fed the V vs. M diet had lower feed intake, growth, hepato-somatic index, apparent availability coefficient (AAC) of Fe, Cu, Mn and Zn and also lower whole body Se and Zn concentration, whereas whole body Fe and Cu and plasma Fe concentrations were higher. Feeding the V diet increased intestinal ferric reductase activity; at transcriptional level, hepatic hepcidin expression was down-regulated and ferroportin 1 was up-regulated. Transcription of intestinal Cu-transporting ATPases and hepatic copper transporter1 were higher in V0 compared to other groups. Among the hepatic metalo-enzyme activities assayed, only Se-dependent glutathione peroxidase was affected, being lower in V fed fish. Premix inclusion reduced the AAC of Fe, Cu and Zn; increased the whole body concentration of all micro- minerals; up-regulated hepatic hepcidin and down-regulated intestinal ferroportin 1 transcription; and reduced the transcription of Cu-transporting ATPases in the intestine. Overall, the regulation of micro-mineral metabolism in rainbow trout, especially Fe and Cu, was affected both by a change in ingredient composition and micro-mineral premix inclusion.


Assuntos
Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Minerais/metabolismo , Oncorhynchus mykiss/fisiologia , Animais , Expressão Gênica , Ferro/metabolismo , Fígado/metabolismo , Fatores de Alongamento de Peptídeos/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...