Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(30): 36908-36921, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467050

RESUMO

In recent decades, antibiotic resistance has become a crucial challenge for human health. One potential solution to this problem is the use of antibacterial surfaces, i.e., copper and copper alloys. This study investigates the antibacterial properties of brass that underwent topographic surface functionalization via ultrashort pulsed direct laser interference patterning. Periodic line-like patterns in the scale range of single bacterial cells were created on brass with a 37% zinc content to enhance the contact area for rod-shaped Escherichia coli (E. coli). Although the topography facilitates attachment of bacteria to the surface, reduced killing rates for E. coli are observed. In parallel, a high-resolution methodical approach was employed to explore the impact of laser-induced topographical and chemical modifications on the antibacterial properties. The findings reveal the underlying role of the chemical modification concerning the antimicrobial efficiency of the Cu-based alloy within the superficial layers of a few hundred nanometers. Overall, this study provides valuable insight into the effect of alloy composition on targeted laser processing for antimicrobial Cu-surfaces, which facilitates the thorough development and optimization of the process concerning antimicrobial applications.


Assuntos
Cobre , Escherichia coli , Humanos , Cobre/farmacologia , Cobre/química , Ligas/farmacologia , Ligas/química , Zinco/farmacologia , Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Lasers , Bactérias , Propriedades de Superfície
2.
ChemSusChem ; 16(13): e202202361, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029553

RESUMO

With the current global projection of over 130 million electric vehicles (EVs), there soon will be a need for battery waste management. Especially for all-solid-state lithium-ion batteries (lithium ASSBs), aspects of waste management and circular economy have not been addressed so far. Within such ASSBs, the use of solid-electrolytes like garnet-type Li6.5 La3 Zr1.5 Ta0.5 O12 (LLZTO) may shift focus on strategies to recover not only the transition metal elements but also elements like La/Zr/Ta. In this work, we present a two-step recycling approach using citric acid as the leaching agent to separate and recover the individual components of a model cell comprising of Li4 Ti5 O12 (LTO) anode, Li6.5 La3 Zr1.5 Ta0.5 O12 (LLZTO) garnet electrolyte and LiNi1/3 Mn1/3 Co1/3 O2 (NMC) cathode. We observe that by adjusting the concentration of citric acid, it was possible to separate the materials from each other without strong mixing of individual phases and also to maintain their principle performance characteristics. Thus, the process developed has a potential for upscaling and can guide towards considering separation capability of battery components in the development of lithium ASSBs.


Assuntos
Ácido Cítrico , Lítio , Íons , Fontes de Energia Elétrica , Eletricidade
3.
Inorg Chem ; 62(10): 4260-4271, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36847349

RESUMO

The binary alkaline-earth aluminides AEAl2 (AE = Ca and Sr) and AEAl4 (AE = Ca-Ba) have been synthesized from the elements and investigated via powder X-ray diffraction experiments. CaAl2 adopts the cubic MgCu2-type structure (Fd3̅m), while SrAl2 crystallizes in the orthorhombic KHg2-type (Imma). LT-CaAl4 crystallizes with the monoclinic CaGa4-type (C2/m), while HT-CaAl4, SrAl4, and BaAl4 adopt the tetragonal BaAl4-type structure (I4/mmm). The close structural relation of the two CaAl4 polymorphs was established using a group-subgroup relation in the Bärnighausen formalism. In addition to the room-temperature and normal pressure phase of SrAl2, a high-pressure/high-temperature phase has been prepared using multianvil techniques, and its structural and spectroscopic parameters were determined. Elemental analysis by inductively coupled plasma mass spectrometry showed that no significant impurities with other elements besides the weighed ones are present and the chemical compositions match the synthesized ones. The title compounds have been furthermore investigated by 27Al solid-state magic angle spinning NMR experiments to validate the crystal structure and to gain information about the influence of the composition on the electron transfer and the NMR characteristics. This has also been investigated from a quantum chemical point of view using Bader charges, while the stabilities of the binary compounds in the three phase diagrams (Ca-Al, Sr-Al and Ba-Al) have been studied by calculations of formation energies per atom.

4.
Chemosphere ; 285: 131445, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34265724

RESUMO

In the context of a high-level nuclear waste disposal, the retention of U(VI) on non-pre-treated Ca-bentonite as potential technical barrier is studied. The objective of this study is to reveal the retention behaviour of U(VI) under extreme geochemical conditions, such as hyperalkaline pH range as well as high salinity at the same time, and taking into account other relevant parameters. This should lead to a better understanding of necessary safety precautions for avoiding a release of U(VI) in the environment. Batch experiments were conducted to determine the influence of the initial U(VI) concentration, salinity, pH value, clay composition and the presence of other elements (Ca(II), I-, Cs(I), Eu(III)). After the sorption experiments, the remaining U(VI) concentration in solution was determined via mass spectrometry with inductively coupled plasma. U(VI) can be immobilised from 10% to 100% under all investigated conditions. Precipitation plays a role in the U(VI) retention but only at higher concentrations (≥10-5 mol L-1). The retention is reversible especially with decreasing pH (<10.5) as the aquo complex Ca2UO2(CO3)3(aq) is formed. Ca(II) strongly enhances the U(VI) adsorption onto Ca-bentonite in the hyperalkaline pH range, probably due to the formation of Ca(II)-bridges. The best retention could be observed on natural bentonite compared to pure montmorillonite and altered bentonite. From a waste cocktail containing important elements of the repository inventory (Cs(I), Eu(III), U(VI) and iodide), only Eu(III) as homologous element to trivalent actinoids competes with U(VI) for binding sites, especially at low metal concentrations, but also facilitates the precipitation at higher concentrations.


Assuntos
Bentonita , Urânio , Adsorção , Argila , Concentração de Íons de Hidrogênio , Íons , Concentração Osmolar
5.
J Environ Manage ; 290: 112619, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33971450

RESUMO

Great temporal and spatial variability of inputs make comprehensive monitoring in small and middle sized rivers difficult. In this study, relevant inputs in a small river were recorded with suitable online monitoring equipment coupled in mobile water quality monitoring stations, the study area being a transborder catchment with French and German (Saarland federal state) subcatchments. In addition to a pronounced spatial variability necessitating a denser net of measuring points this catchment has also to be assessed in the light of different national regulations. To identify individual pollution sources and weigh their relative importance, relevant parameters were recorded over a representative monitoring period of several months: phosphorus (P) as total phosphorus (TP) and total reactive P phosphorus (TRP), nitrate (NO3-N), ammonium (NH4-N), total organic carbon (TOC), temperature, oxygen (O2), pH, turbidity, and electrical conductivity (EC). The recorded data were subjected to adapted interpretation together with other catchment-related factors. In order to retrieve maximum information from the online data sets the relationships among certain parameter pairs were also analysed for both storm events and low flow periods. Comparison of loads at the different monitoring sites could reliably verify the majority of nutrient inputs originating in the French subcatchment. Additional sampling of output channels from sewage treatment works (STWs) in the Saarland subcatchment revealed that inputs from several decentralised STWs do not result in significant loads, as opposed to inputs from one STW in France. Our holistic approach provides a basis for adopting cost-effective measures to reduce loads in small river catchments as well as cross-border harmonisation of environmental policies.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Monitoramento Ambiental , França , Fósforo/análise , Rios , Poluentes Químicos da Água/análise
6.
Eur J Pharm Biopharm ; 158: 284-293, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33285246

RESUMO

The delivery of oligonucleotides such as siRNA to the lung is a major challenge, as this group of drugs has difficulties to overcome biological barriers due to its polyanionic character and the associated hydrophilic properties, resulting in inefficient delivery. Especially in diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis, where increased proinflammation is present, a targeted RNA therapy is desirable due to the high potency of these oligonucleotides. To address these problems and to ensure efficient uptake of siRNA in macrophages, a microparticulate, cylindrical delivery system was developed. In the first step, this particle system was tested for its aerodynamic characteristics to evaluate the aerodynamic properties to optimize lung deposition. The mass median aerodynamic diameter of 2.52 ± 0.23 µm, indicates that the desired target should be reached. The inhibition of TNF-α release, as one of the main mediators of proinflammatory reactions, was investigated. We could show that our carrier system can be loaded with siRNA against TNF-α. Gel electrophoreses allowed to demonstrate that the load can be incorporated and released without being degraded. The delivery system was found to transport a mass fraction of 0.371% [%w/w] as determined by inductively coupled plasma mass spectroscopy. When investigating the release kinetics, the results showed that several days are necessary to release a major amount of the siRNA indicating a sustained release. The cylindrical microparticles with an aspect ratio of 3.3 (ratio of length divided by width) were then tested in vitro successfully reducing TNF-α release from human macrophages significantly by more than 30%. The developed formulation presents a possible oligonucleotide delivery system allowing due to its internal structure to load and protect siRNA.


Assuntos
Portadores de Fármacos/química , Macrófagos/metabolismo , RNA Interferente Pequeno/administração & dosagem , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Administração por Inalação , Asma/tratamento farmacológico , Fibrose Cística/tratamento farmacológico , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Microesferas , Terapia de Alvo Molecular/métodos , Tamanho da Partícula , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , RNA Interferente Pequeno/farmacocinética , Células THP-1
7.
Respir Res ; 21(1): 168, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616045

RESUMO

BACKGROUND: Titanium dioxide nanoparticles (TiO2 NPs) have a wide range of applications in several industrial and biomedical domains. Based on the evidence, the workers exposed to inhaled nanosized TiO2 powder are more susceptible to the risks of developing respiratory diseases. Accordingly, this issue has increasingly attracted the researchers' interest in understanding the consequences of TiO2 NPs exposure. Regarding this, the present study was conducted to analyze the local effects of TiO2 NPs on allergic airway inflammation and their uptake in a mouse model of ovalbumin (OVA)-induced allergic airway inflammation. METHODS: For the purpose of the study, female BALB/c mice with or without asthma were intranasally administered with TiO2 NPs. The mice were subjected to histological assessment, lung function testing, scanning electron microscopy (SEM), inductively coupled plasma mass spectrometry (ICP-MS), and NP uptake measurement. In addition, T helper (Th) 1/Th2 cytokines were evaluated in the lung homogenate using the enzyme-linked immunosorbent assay. RESULTS: According to the results, the mice receiving OVA alone or OVA plus TiO2 NPs showed eosinophilic infiltrates and mucus overproduction in the lung tissues, compared to the controls. Furthermore, a significant elevation was observed in the circulating Th2 cytokines, including interleukin (IL)-4, IL-5, and IL-13 after NP exposure. The TiO2 NPs were taken up by alveolar macrophages at different time points. As the results of the SEM and ICP-MS indicated, TiO2 NPs were present in most of the organs in both asthmatic and non-asthmatic mice. CONCLUSION: Based on the findings of the current study, intranasally or inhalation exposure to high-dose nanosized TiO2 particles appears to exacerbate the allergic airway inflammation and lead to systemic uptake in extrapulmonary organs. These results indicate the very important need to investigate the upper limit of intranasally or inhalation exposure to nanosized TiO2 particles in occupational and environmental health policy.


Assuntos
Asma/induzido quimicamente , Asma/patologia , Nanopartículas/toxicidade , Titânio/toxicidade , Administração Intranasal , Animais , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/fisiopatologia , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Eosinófilos/imunologia , Feminino , Exposição por Inalação , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Ovalbumina/imunologia , Testes de Função Respiratória , Linfócitos T Auxiliares-Indutores/metabolismo , Titânio/administração & dosagem
8.
Sci Total Environ ; 651(Pt 2): 2323-2333, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30332665

RESUMO

The quality standards for surface waters increase steadily bearing new challenges for water policy. Precise knowledge of the sources and transport pathway of various impacts in a catchment area is of particular importance for any management activities. Online measurements with high temporal resolution are particularly suited for this purpose especially in small and middle scale catchments. In this paper we present an approach applying mobile measuring stations in which commercial available sensors and wet chemical analysers are combined in a new set to enable real-time monitoring of various parameters. The resulting data and the interpretation of their relationships allow the identification of diverse pollution situations in a river. In this paper some examples of impacts from diffuse and point sources are given to illustrate the high information density obtained through the use of this system.

9.
Talanta ; 167: 532-536, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28340756

RESUMO

The determination of iodine as a main fission product (especially the isotopes I-129 and I-131) of stored HLW in a disposal beside its distribution as a natural ingredient of many different products like milk, food and seawater is a matter of particular interest. The simultaneous ICP-MS determination of iodine as iodide together with other elements (especially higher valent metal ions) relevant for HLW is analytically very problematic. A reliable ICP-MS quantification of iodide must be performed at neutral or alkaline conditions in contrast to the analysis of metal ions which are determined in acidic pH ranges. Herein, we present a method to solve this problem by changing the iodine speciation resulting in an ICP-MS determination of iodide as iodate. The oxidation from iodide to iodate with sodium hypochlorite at room temperature is a fast and convenient method with flexible reaction time, from one hour up to three days, thus eliminating the disadvantages of quantifying iodine species via ICP-MS. In the analysed concentration range of iodine (0.1-100µgL-1) we obtain likely quantitative recovery rates for iodine between 91% and 102% as well as relatively low RSD values (0.3-4.0%). As an additional result, it is possible to measure different other element species in parallel together with the generated iodate, even high valent metals (europium and uranium beside caesium) at recovery rates in the same order of magnitude (93-104%). In addition, the oxidation process operates above pH 7 thus offering a wide pH range for sample preparation. Even analytes in complex matrices, like 5M saline (NaCl) solution or artificial cement pore water (ACW) can be quantified with this robust sample preparation method.


Assuntos
Ácidos/química , Césio/análise , Európio/análise , Iodo/análise , Espectrometria de Massas/métodos , Urânio/análise , Água/análise , Concentração de Íons de Hidrogênio , Limite de Detecção , Água/química
10.
Talanta ; 164: 477-482, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28107961

RESUMO

In the near future it is necessary to establish a disposal for high level nuclear waste (HLW) in deep and stable geological formations. In Germany typical host rocks are salt or claystone. Suitable clay formations exist in the south and in the north of Germany. The geochemical conditions of these clay formations show a strong difference. In the northern ionic strengths of the pore water up to 5M are observed. The determination of parameters like Kd values during sorption experiments of metal ions like uranium or europium as homologues for trivalent actinides onto clay stones are very important for long term safety analysis. The measurement of the low concentrated, not sorbed analytes commonly takes place by inductively coupled plasma mass spectrometry (ICP-MS). A direct measurement of high saline samples like seawater with more than 1% total dissolved salt content is not possible. Alternatives like sample clean up, preconcentration or strong dilution have more disadvantages than advantages for example more preparation steps or additional and expensive components. With a small modification of the ICP-MS sample introduction system and a home-made reprogramming of the autosampler a transient analysing method was developed which is suitable for measuring metal ions like europium and uranium in high saline sample matrices up to 5M (NaCl). Comparisons at low ionic strength between the default and the transient measurement show the latter performs similarly well to the default measurement. Additionally no time consuming sample clean-up or expensive online dilution or matrix removal systems are necessary and the analysation shows a high sensitivity due to the data processing based on the peak area.

11.
Small ; 13(10)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28009478

RESUMO

Nanotechnology is showing promise in many medical applications such as drug delivery and hyperthermia. Nanoparticles administered to the respiratory tract cause local reactions and cross the blood-air barrier, thereby providing a means for easy systemic administration but also a potential source of toxicity. Little is known about how these effects are influenced by preexisting airway diseases such as asthma. Here, BALB/c mice are treated according to the ovalbumin (OVA) asthma protocol to promote allergic airway inflammation. Dispersions of polyethylene-glycol-coated (PEGylated) and citrate/tannic-acid-coated (citrated) 5 nm gold nanoparticles are applied intranasally to asthma and control groups, and (i) airway resistance and (ii) local tissue effects are measured as primary endpoints. Further, nanoparticle uptake into extrapulmonary organs is quantified by inductively coupled plasma mass spectrometry. The asthmatic precondition increases nanoparticle uptake. Moreover, systemic uptake is higher for PEGylated gold nanoparticles compared to citrated nanoparticles. Nanoparticles inhibit both inflammatory infiltrates and airway hyperreactivity, especially citrated gold nanoparticles. Although the antiinflammatory effects of gold nanoparticles might be of therapeutic benefit, systemic uptake and consequent adverse effects must be considered when designing and testing nanoparticle-based asthma therapies.


Assuntos
Asma/tratamento farmacológico , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanotecnologia/métodos , Animais , Asma/induzido quimicamente , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/toxicidade , Polietilenoglicóis/química
12.
Electrophoresis ; 38(6): 930-937, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27922184

RESUMO

For the safe long-term storage of high-level radioactive waste (HLW), detailed information about geo-chemical behavior of radioactive and toxic metal ions under environmental conditions is important. Natural organic matter (NOM) can play a crucial role in the immobilization or mobilization of these metal ions due to its complexation and colloid formation tendency. In this study, the complexation of europium (as chemical homologue of trivalent actinides such as americium) and uranium (as main component of HLW) by ten humic acids (HA) from different sources and Suwannee NOM river extract has been analyzed. Capillary electrophoresis in combination with inductively coupled plasma mass spectrometry has been used for the evaluation of complex stability constants log ß. In order to determine the complex stability constants a conservative single site model was used in this study. In dependence of their source and thus of NOM structure the log ß values for the analyzed humic acids are in the range of 6.1-7.0 for Eu(III) and 5.2-6.4 for U(VI) (UO22+ ), respectively. In contrast to the results for HA the used Suwannee river NOM reveals log ß values in the range of nearly two orders of magnitude lower (4.6 for Eu3+ and 4.5 for UO22+ ) under the geochemical conditions applied in this study.


Assuntos
Complexos de Coordenação/análise , Eletroforese Capilar/métodos , Európio/química , Espectrometria de Massas/métodos , Urânio/química , Poluentes Radioativos da Água/análise , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Rios , Sensibilidade e Especificidade
13.
Anal Chim Acta ; 816: 50-9, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24580854

RESUMO

The complexation behavior of Aldrich humic acid (AHA) and a modified humic acid (AHA-PB) with blocked phenolic hydroxyl groups for trivalent lanthanides (Ln) is compared, and their influence on the mobility of Ln(III) in an aquifer is analyzed. As speciation technique, capillary electrophoresis (CE) was hyphenated with inductively coupled plasma mass spectrometry (ICP-MS). For metal loading experiments 25 mg L(-1) of AHA and different concentrations (cLn(Eu+Gd)=100-6000 µg L(-1)) of Eu(III) and Gd(III) in 10mM NaClO4 at pH 5 were applied. By CE-ICP-MS, three Ln-fractions, assumed to be uncomplexed, weakly and strongly AHA-complexed metal can be detected. For the used Ln/AHA-ratios conservative complex stability constants log ßLnAHA decrease from 6.33 (100 µg L(-1) Ln(3+)) to 4.31 (6000 µg L(-1) Ln(3+)) with growing Ln-content. In order to verify the postulated weaker and stronger humic acid binding sites for trivalent Eu and Gd, a modified AHA with blocked functional groups was used. For these experiments 500 µg L(-1) Eu and 25 mg L(-1) AHA and AHA-PB in 10mM NaClO4 at pH-values ranging from 3 to 10 have been applied. With AHA-PB, where 84% of the phenolic OH-groups and 40% of the COOH-groups were blocked, Eu complexation was significantly lower, especially at the strong binding sites. The log ß-values decrease from 6.11 (pH 10) to 5.61 at pH 3 (AHA) and for AHA-PB from 6.01 (pH 7) to 3.94 at pH 3. As a potential consequence, particularly humic acids with a high amount of strong binding sites (e.g. phenolic OH- and COOH-groups) can be responsible for a higher metal mobility in the aquifer due to the formation of dissolved negatively charged metal-humate species.


Assuntos
Substâncias Húmicas , Elementos da Série dos Lantanídeos/análise , Espectrometria de Massas , Estrutura Molecular , Fenóis/química
14.
Electrophoresis ; 33(9-10): 1482-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22648819

RESUMO

Investigations of the mobility of radioactive and nonradioactive substances in the environment are important tasks for the development of a future disposal in deep geological formations. Dissolved organic matter (DOM) can play an important role in the mobilization of metal ions due to complexation. In this study, we investigate the complexation behavior of humic acid (HA) as a model substance for DOM and its influence on the migration of europium as homologue for the actinide americium and uranium as the principal component of nuclear fuel. As speciation technique, capillary electrophoresis (CE) was hyphenated with inductively coupled plasma mass spectrometry (ICP-MS). For the study, 0.5 mg·L⁻¹ of the metals and 25 mg·L⁻¹ of (purified Aldrich) HA and an aqueous solution sodium-perchlorate with an ionic strength of 10 mM at pH 5 were used. CE-ICP-MS clearly shows the different speciation of the triple positively charged europium and the double positively charged uranyl cation with HA.


Assuntos
Eletroforese Capilar/métodos , Európio/química , Substâncias Húmicas/análise , Espectrometria de Massas/métodos , Urânio/química , Concentração de Íons de Hidrogênio , Concentração Osmolar
15.
J Environ Monit ; 12(6): 1295-301, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20532382

RESUMO

In this study we investigated the sorption and desorption behaviour of europium and gadolinium (homologues of the actinides americium and curium) onto the clay mineral kaolinite KGa-1b. In the model system metal/kaolinite, sorption isotherms and pH-edges were determined in different batch experiments. Calcium and magnesium as competing cations were used to simulate the influence of water hardness on the sorption and desorption processes. After centrifugation, the free metal ions in the supernatant solution were analysed by ICP-MS. With increasing lanthanide concentration, especially the relative desorption of these metals from kaolinite rises significantly before the cation exchange capacity (CEC) of 0.94 meq per 100 g is reached. This indicates that low lanthanide concentrations will result in a relatively lower metal migration due to sorption reactions at higher active sites in comparison with higher lanthanide concentrations. The K(d)-values and sorption isotherms of Eu(iii) and Gd(iii) were determined at pH 5.0 (+/-0.02) and analysed with Freundlich and Langmuir sorption models. The experimental data can best be fitted by Langmuir sorption isotherm. The pH-value has only a minor influence on the sorption onto kaolinite. Only at low pH-values (

Assuntos
Európio/química , Gadolínio/química , Caulim/química , Poluentes Radioativos do Solo/química , Absorção , Adsorção , Fenômenos Geológicos , Concentração de Íons de Hidrogênio
16.
Proteomics ; 9(5): 1152-76, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19253280

RESUMO

Staphylococcus aureus Clp ATPases (molecular chaperones) alter normal physiological functions including an aconitase-mediated effect on post-stationary growth, acetate catabolism, and entry into death phase (Chatterjee et al., J. Bacteriol. 2005, 187, 4488-4496). In the present study, the global function of ClpC in physiology, metabolism, and late-stationary phase survival was examined using DNA microarrays and 2-D PAGE followed by MALDI-TOF MS. The results suggest that ClpC is involved in regulating the expression of genes and/or proteins of gluconeogenesis, the pentose-phosphate pathway, pyruvate metabolism, the electron transport chain, nucleotide metabolism, oxidative stress, metal ion homeostasis, stringent response, and programmed cell death. Thus, one major function of ClpC is balancing late growth phase carbon metabolism. Furthermore, these changes in carbon metabolism result in alterations of the intracellular concentration of free NADH, the amount of cell-associated iron, and fatty acid metabolism. This study provides strong evidence for ClpC as a critical factor in staphylococcal energy metabolism, stress regulation, and late-stationary phase survival; therefore, these data provide important insight into the adaptation of S. aureus toward a persister state in chronic infections.


Assuntos
Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/fisiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/fisiologia , Carbono/metabolismo , Carbono/fisiologia , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/fisiologia , Fenótipo , Staphylococcus aureus/genética , Fatores de Tempo
18.
J Chromatogr A ; 1159(1-2): 75-80, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17459403

RESUMO

For the long-term storage of radioactive waste, detailed information about geo-chemical behavior of radioactive and toxic metal ions under environmental conditions is necessary. Humic acid (HA) can play an important role in the immobilisation or mobilisation of metal ions due to complexation and colloid formation. Therefore, we investigate the complexation behavior of HA and its influence on the migration or retardation of selected lanthanides (europium and gadolinium as homologues of the actinides americium and curium). Two independent speciation techniques, ultrafiltration and capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICP-MS) have been compared for the study of Eu and Gd interaction with (purified Aldrich) HA. The degree of complexation of Eu and Gd in 25 mg l(-1) Aldrich HA solutions was determined with a broad range of metal loading (Eu and Gd total concentration between 10(-6) and 10(-4) mol l(-1)), ionic strength of 10 mM (NaClO4) and different pH-values. From the CE-ICP-MS electropherograms, additional information on the charge of the Eu species was obtained by the use of 1-bromopropane as neutral marker. To detect HA in the ICP-MS and separate between HA complexed and non complexed metal ions in the CE-ICP-MS, we have halogenated the HA with iodine as ICP-MS marker.


Assuntos
Eletroforese Capilar/métodos , Európio/análise , Gadolínio/análise , Substâncias Húmicas/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise de Injeção de Fluxo , Isótopos de Iodo , Focalização Isoelétrica , Modelos Químicos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Oligoelementos , Ultrafiltração
19.
Anal Bioanal Chem ; 384(6): 1416-22, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16505985

RESUMO

Detailed information on the geochemical behavior of radioactive and toxic metal ions under environmental conditions (in geological matrices and aquifer systems) is needed in order to assess the long-term safety of waste repositories. This includes knowledge of the mechanisms of relevant geochemical reactions, as well as associated thermodynamic and kinetic data. Several previous studies have shown that humic acid can play an important role in the immobilization or mobilization of metal ions due to complexation and colloid formation. In our project we investigate the complexation behavior of (purified Aldrich) humic acid and its influence on the migration of the lanthanides europium and gadolinium (homologs of the actinides americium and curium) in the ternary system consisting of these heavy metals, humic acid and kaolinite (KGa-1b) under almost natural conditions. Capillary electrophoresis (CE, Beckman Coulter P/ACE MDQ), with its excellent separation performance, was hyphenated with a homemade interface to inductively coupled plasma mass spectrometry (ICP-MS, VG Elemental PlasmaQuad 3) giving a system that is highly sensitive to the rare-earth element species of europium and gadolinium with humic acid. The humic acid used was also halogenated with iodine, which acted as an ICP-MS marker. To couple CE to ICP-MS, a fused silica CE capillary was flexibly fitted into a MicroMist 50 mul nebulizer with a Cinnabar cyclonic spray chamber in the external homemade interface. The chamber was chilled to a temperature of 4 degrees C to optimize the sensitivity. 200 ppb of cesium were added to the CE separation buffer so that the capillary flow could be observed. A make-up fluid including 4 ppb Ho as an internal standard was combined with the flow from the capillary within the interface in order to get a fluid throughput high enough to maintain continuous nebulization. Very low detection limits were achieved: 125 ppt for 153Eu and 250 ppt for 158Gd. Using this optimized CE-ICP-MS coupling system it was possible to quantify metal concentrations from the detection limit up to approximately 1 ppm (the linear range). This set-up was used to separate metal/humic acid-species in a 100 mM acetic acid/10 mM acetate buffer system. Using humic acid as the complexing ligand, uncomplexed metal ion species could be separated from metal-humate complexes on a time-resolved scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...