Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 23(11): 683-704, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192596

RESUMO

The past decade has witnessed remarkable advances in the simultaneous measurement of neuronal activity across many brain regions, enabling fundamentally new explorations of the brain-spanning cellular dynamics that underlie sensation, cognition and action. These recently developed multiregion recording techniques have provided many experimental opportunities, but thoughtful consideration of methodological trade-offs is necessary, especially regarding field of view, temporal acquisition rate and ability to guarantee cellular resolution. When applied in concert with modern optogenetic and computational tools, multiregion recording has already made possible fundamental biological discoveries - in part via the unprecedented ability to perform unbiased neural activity screens for principles of brain function, spanning dozens of brain areas and from local to global scales.


Assuntos
Neurônios , Optogenética , Humanos , Neurônios/fisiologia , Optogenética/métodos , Encéfalo/fisiologia , Cognição , Sensação
2.
Nature ; 586(7827): 87-94, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32939091

RESUMO

Advanced imaging methods now allow cell-type-specific recording of neural activity across the mammalian brain, potentially enabling the exploration of how brain-wide dynamical patterns give rise to complex behavioural states1-12. Dissociation is an altered behavioural state in which the integrity of experience is disrupted, resulting in reproducible cognitive phenomena including the dissociation of stimulus detection from stimulus-related affective responses. Dissociation can occur as a result of trauma, epilepsy or dissociative drug use13,14, but despite its substantial basic and clinical importance, the underlying neurophysiology of this state is unknown. Here we establish such a dissociation-like state in mice, induced by precisely-dosed administration of ketamine or phencyclidine. Large-scale imaging of neural activity revealed that these dissociative agents elicited a 1-3-Hz rhythm in layer 5 neurons of the retrosplenial cortex. Electrophysiological recording with four simultaneously deployed high-density probes revealed rhythmic coupling of the retrosplenial cortex with anatomically connected components of thalamus circuitry, but uncoupling from most other brain regions was observed-including a notable inverse correlation with frontally projecting thalamic nuclei. In testing for causal significance, we found that rhythmic optogenetic activation of retrosplenial cortex layer 5 neurons recapitulated dissociation-like behavioural effects. Local retrosplenial hyperpolarization-activated cyclic-nucleotide-gated potassium channel 1 (HCN1) pacemakers were required for systemic ketamine to induce this rhythm and to elicit dissociation-like behavioural effects. In a patient with focal epilepsy, simultaneous intracranial stereoencephalography recordings from across the brain revealed a similarly localized rhythm in the homologous deep posteromedial cortex that was temporally correlated with pre-seizure self-reported dissociation, and local brief electrical stimulation of this region elicited dissociative experiences. These results identify the molecular, cellular and physiological properties of a conserved deep posteromedial cortical rhythm that underlies states of dissociation.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Transtornos Dissociativos/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento/efeitos dos fármacos , Ondas Encefálicas/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/efeitos dos fármacos , Transtornos Dissociativos/diagnóstico por imagem , Eletrofisiologia , Feminino , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ketamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Optogenética , Autorrelato , Tálamo/citologia , Tálamo/diagnóstico por imagem , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
3.
Neuron ; 107(2): 351-367.e19, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32433908

RESUMO

To advance the measurement of distributed neuronal population representations of targeted motor actions on single trials, we developed an optical method (COSMOS) for tracking neural activity in a largely uncharacterized spatiotemporal regime. COSMOS allowed simultaneous recording of neural dynamics at ∼30 Hz from over a thousand near-cellular resolution neuronal sources spread across the entire dorsal neocortex of awake, behaving mice during a three-option lick-to-target task. We identified spatially distributed neuronal population representations spanning the dorsal cortex that precisely encoded ongoing motor actions on single trials. Neuronal correlations measured at video rate using unaveraged, whole-session data had localized spatial structure, whereas trial-averaged data exhibited widespread correlations. Separable modes of neural activity encoded history-guided motor plans, with similar population dynamics in individual areas throughout cortex. These initial experiments illustrate how COSMOS enables investigation of large-scale cortical dynamics and that information about motor actions is widely shared between areas, potentially underlying distributed computations.


Assuntos
Córtex Cerebral/fisiologia , Neuroimagem/instrumentação , Neuroimagem/métodos , Observação/métodos , Algoritmos , Animais , Comportamento Animal/fisiologia , Mapeamento Encefálico , Condicionamento Operante , Craniotomia , Camundongos , Neocórtex/citologia , Neocórtex/fisiologia , Neurônios , Optogenética/métodos , Desempenho Psicomotor , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Robóticos/métodos , Razão Sinal-Ruído
4.
Neuron ; 94(4): 891-907.e6, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28521139

RESUMO

The successful planning and execution of adaptive behaviors in mammals may require long-range coordination of neural networks throughout cerebral cortex. The neuronal implementation of signals that could orchestrate cortex-wide activity remains unclear. Here, we develop and apply methods for cortex-wide Ca2+ imaging in mice performing decision-making behavior and identify a global cortical representation of task engagement encoded in the activity dynamics of both single cells and superficial neuropil distributed across the majority of dorsal cortex. The activity of multiple molecularly defined cell types was found to reflect this representation with type-specific dynamics. Focal optogenetic inhibition tiled across cortex revealed a crucial role for frontal cortex in triggering this cortex-wide phenomenon; local inhibition of this region blocked both the cortex-wide response to task-initiating cues and the voluntary behavior. These findings reveal cell-type-specific processes in cortex for globally representing goal-directed behavior and identify a major cortical node that gates the global broadcast of task-related information.


Assuntos
Comportamento Animal/fisiologia , Tomada de Decisões/fisiologia , Lobo Frontal/fisiologia , Objetivos , Neocórtex/fisiologia , Neurônios/fisiologia , Animais , Cálcio/metabolismo , Lobo Frontal/metabolismo , Camundongos , Neocórtex/citologia , Neocórtex/metabolismo , Neurônios/metabolismo , Imagem Óptica , Optogenética
5.
Cell ; 157(7): 1535-51, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24949967

RESUMO

Social interaction is a complex behavior essential for many species and is impaired in major neuropsychiatric disorders. Pharmacological studies have implicated certain neurotransmitter systems in social behavior, but circuit-level understanding of endogenous neural activity during social interaction is lacking. We therefore developed and applied a new methodology, termed fiber photometry, to optically record natural neural activity in genetically and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior. Fiber photometry revealed that activity dynamics of a ventral tegmental area (VTA)-to-nucleus accumbens (NAc) projection could encode and predict key features of social, but not novel object, interaction. Consistent with this observation, optogenetic control of cells specifically contributing to this projection was sufficient to modulate social behavior, which was mediated by type 1 dopamine receptor signaling downstream in the NAc. Direct observation of deep projection-specific activity in this way captures a fundamental and previously inaccessible dimension of mammalian circuit dynamics.


Assuntos
Vias Neurais , Núcleo Accumbens/fisiologia , Comportamento Social , Área Tegmentar Ventral/fisiologia , Animais , Sinalização do Cálcio , Feminino , Camundongos , Núcleo Accumbens/citologia , Fotometria/métodos , Receptores Dopaminérgicos/química , Receptores Dopaminérgicos/metabolismo , Recompensa , Rodopsina/química , Rodopsina/metabolismo , Área Tegmentar Ventral/citologia
6.
Adv Mater ; 22(39): 4359-63, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20623753

RESUMO

Substantial in-plane crystallinity and dominant face-on stacking are observed in thin films of a high-mobility n-type rylene-thiophene copolymer. Spun films of the polymer, previously thought to have little or no order are found to exhibit an ordered microstructure at both interfaces, and in the bulk. The implications of this type of packing and crystalline morphology are discussed as they relate to thin-film transistors.


Assuntos
Movimento (Física) , Naftalimidas/química , Polímeros/química , Elétrons , Transistores Eletrônicos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...