Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2202-2205, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018444

RESUMO

In-vitro transfection of cells by electroporation is a widely used approach in cell biology and medicine. The transfection method is highly dependent on the cell culture's electrical resistance, which is strongly determined by differences in the membranes, but also on the morphology of the electrodes. Microneedle (MN)-based electrodes have been used to concentrate the electrical field during electroporation, and therefore maximize its effect on cell membrane permeability. So far, the methods used for the fabrication of MN electrodes have been relatively limited with respect to the needle design. In this work, we provide a method to fabricate MNs using 3D printing, which is a technology that provides a high degree of flexibility with respect to geometry and dimensions. Pyramidal-shaped MN designs were fabricated and tested on HCT116 cancer cells. Customization of the tips of the pyramids permits tailoring of the electrical field in the vicinity of the cell membranes. The fabricated device enables low-voltage (2 V) electroporation, eliminating the need for the use of specialized chemical buffers. The results show the potential of this method, which can be exploited and optimized for many different applications, and offer a very accessible approach for in-vitro electroporation and cell studies. The MNs can be customized to create complex structures, for example, for a multi-culture cell environment.


Assuntos
Sistemas de Liberação de Medicamentos , Eletroporação , Agulhas , Impressão Tridimensional , Transfecção
2.
Sci Rep ; 8(1): 9918, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967360

RESUMO

Methods that provide controlled influx of molecules into cells are of critical importance for uncovering cellular mechanisms, drug development and synthetic biology. However, reliable intracellular delivery without adversely affecting the cells is a major challenge. We developed a platform for on-demand intracellular delivery applications, with which cell membrane penetration is achieved by inductive heating of micro needles. The micro needles of around 1 µm in diameter and 5 µm in length are made of gold using a silicon-based micro fabrication process that provides flexibility with respect to the needles' dimensions, pitch, shell thickness and the covered area. Experiments with HCT 116 colon cancer cells showed a high biocompatibility of the gold needle platform. Transmission electron microscopy of the cell-needle interface revealed folding of the cell membrane around the needle without penetration, preventing any delivery, which was confirmed using the EthD-1 fluorescent dye. The application of an alternating magnetic field, however, resulted in the delivery of EthD-1 by localized heating of the micro needles. Fluorescence quantification showed that intracellular delivery, with as high as 75% efficiency, is achieved for specific treatment times between 1 and 5 minutes. Overexposure of the cells to the heated micro needles, i.e. longer magnetic field application, leads to an increase in cell death, which can be exploited for cleaning the platform. This method allows to perform intracellular deliver by remotely activating the micro needles via a magnetic field, and it is controlled by the application time, making it a versatile and easy to use method. The wireless actuation could also be an attractive feature for in-vivo delivery and implantable devices.


Assuntos
Citoplasma , Agulhas , Células HCT116 , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
3.
Sci Rep ; 6: 28539, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27335342

RESUMO

Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...