Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 20(208): 20230355, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38016637

RESUMO

Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader's fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader's dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader's connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader's fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident.


Assuntos
Evolução Biológica , Seleção Genética , Mutação , Dinâmica Populacional , Probabilidade
2.
Semin Cancer Biol ; 92: 61-73, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023969

RESUMO

Tumors consist of different genotypically distinct subpopulations-or subclones-of cells. These subclones can influence neighboring clones in a process called "clonal interaction." Conventionally, research on driver mutations in cancer has focused on their cell-autonomous effects that lead to an increase in fitness of the cells containing the driver. Recently, with the advent of improved experimental and computational technologies for investigating tumor heterogeneity and clonal dynamics, new studies have shown the importance of clonal interactions in cancer initiation, progression, and metastasis. In this review we provide an overview of clonal interactions in cancer, discussing key discoveries from a diverse range of approaches to cancer biology research. We discuss common types of clonal interactions, such as cooperation and competition, its mechanisms, and the overall effect on tumorigenesis, with important implications for tumor heterogeneity, resistance to treatment, and tumor suppression. Quantitative models-in coordination with cell culture and animal model experiments-have played a vital role in investigating the nature of clonal interactions and the complex clonal dynamics they generate. We present mathematical and computational models that can be used to represent clonal interactions and provide examples of the roles they have played in identifying and quantifying the strength of clonal interactions in experimental systems. Clonal interactions have proved difficult to observe in clinical data; however, several very recent quantitative approaches enable their detection. We conclude by discussing ways in which researchers can further integrate quantitative methods with experimental and clinical data to elucidate the critical-and often surprising-roles of clonal interactions in human cancers.


Assuntos
Neoplasias , Animais , Humanos , Neoplasias/patologia , Células Clonais/patologia , Evolução Clonal/genética
3.
J Theor Biol ; 564: 111436, 2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-36828246

RESUMO

Local environmental interactions are a major factor in determining the success of a new mutant in structured populations. Spatial variations in the concentration of genotype-specific resources change the fitness of competing strategies locally and thus can drastically change the outcome of evolutionary processes in unintuitive ways. The question is how such local environmental variations in network population structures change the condition for selection and fixation probability of an advantageous (or deleterious) mutant. We consider linear graph structures and focus on the case where resources have a spatial periodic pattern. This is the simplest model with two parameters, length scale and fitness scales, representing heterogeneity. We calculate fixation probability and fixation times for a constant population birth-death process as fitness heterogeneity and period vary. Fixation probability is affected by not only the level of fitness heterogeneity but also spatial scale of resources variations set by period of distribution T. We identify conditions for which a previously a deleterious mutant (in a uniform environment) becomes beneficial as fitness heterogeneity is increased. We observe cases where the fixation probability of both mutant and resident types are more than their neutral value, 1/N, simultaneously. This coincides with exponential increase in time to fixation which points to potential coexistence of resident and mutant types. Finally, we discuss the effect of the 'fitness shift' where the fitness function of two types has a phase difference. We observe significant increases (or decreases) in the fixation probability of the mutant as a result of such phase shift.


Assuntos
Evolução Biológica , Seleção Genética , Dinâmica Populacional , Processos Estocásticos , Probabilidade , Mutação
4.
PLoS Comput Biol ; 16(11): e1008402, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33151935

RESUMO

Resources are rarely distributed uniformly within a population. Heterogeneity in the concentration of a drug, the quality of breeding sites, or wealth can all affect evolutionary dynamics. In this study, we represent a collection of properties affecting the fitness at a given location using a color. A green node is rich in resources while a red node is poorer. More colors can represent a broader spectrum of resource qualities. For a population evolving according to the birth-death Moran model, the first question we address is which structures, identified by graph connectivity and graph coloring, are evolutionarily equivalent. We prove that all properly two-colored, undirected, regular graphs are evolutionarily equivalent (where "properly colored" means that no two neighbors have the same color). We then compare the effects of background heterogeneity on properly two-colored graphs to those with alternative schemes in which the colors are permuted. Finally, we discuss dynamic coloring as a model for spatiotemporal resource fluctuations, and we illustrate that random dynamic colorings often diminish the effects of background heterogeneity relative to a proper two-coloring.


Assuntos
Evolução Biológica , Modelos Biológicos , Animais , Cor , Biologia Computacional , Gráficos por Computador , Simulação por Computador , Aptidão Genética , Genética Populacional/estatística & dados numéricos , Humanos , Conceitos Matemáticos , Mutação , Dinâmica Populacional/estatística & dados numéricos , Probabilidade , Análise Espaço-Temporal
5.
PLoS Comput Biol ; 15(8): e1007278, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31449515

RESUMO

Understanding intrinsic and acquired resistance is crucial to overcoming cancer chemotherapy failure. While it is well-established that intratumor, subclonal genetic and phenotypic heterogeneity significantly contribute to resistance, it is not fully understood how tumor sub-clones interact with each other to withstand therapy pressure. Here, we report a previously unrecognized behavior in heterogeneous tumors: cooperative adaptation to therapy (CAT), in which cancer cells induce co-resistant phenotypes in neighboring cancer cells when exposed to cancer therapy. Using a CRISPR/Cas9 toolkit we engineered phenotypically diverse non-small cell lung cancer (NSCLC) cells by conferring mutations in Dicer1, a type III cytoplasmic endoribonuclease involved in small non-coding RNA genesis. We monitored three-dimensional growth dynamics of fluorescently-labeled mutant and/or wild-type cells individually or in co-culture using a substrate-free NanoCulture system under unstimulated or drug pressure conditions. By integrating mathematical modeling with flow cytometry, we characterized the growth patterns of mono- and co-cultures using a mathematical model of intra- and interspecies competition. Leveraging the flow cytometry data, we estimated the model's parameters to reveal that the combination of WT and mutants in co-cultures allowed for beneficial growth in previously drug sensitive cells despite drug pressure via induction of cell state transitions described by a cooperative game theoretic change in the fitness values. Finally, we used an ex vivo human tumor model that predicts clinical response through drug sensitivity analyses and determined that cellular and morphologic heterogeneity correlates to prognostic failure of multiple clinically-approved and off-label drugs in individual NSCLC patient samples. Together, these findings present a new paradox in drug resistance implicating non-genetic cooperation among tumor cells to thwart drug pressure, suggesting that profiling for druggable targets (i.e. mutations) alone may be insufficient to assign effective therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/fisiopatologia , Adaptação Fisiológica/genética , Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proliferação de Células/fisiologia , Técnicas de Cocultura , Biologia Computacional , Simulação por Computador , RNA Helicases DEAD-box/genética , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/genética , Modelos Biológicos , Mutação , Ribonuclease III/genética
6.
R Soc Open Sci ; 6(1): 181661, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30800394

RESUMO

Many mathematical models of evolution assume that all individuals experience the same environment. Here, we study the Moran process in heterogeneous environments. The population is of finite size with two competing types, which are exposed to a fixed number of environmental conditions. Reproductive rate is determined by both the type and the environment. We first calculate the condition for selection to favour the mutant relative to the resident wild-type. In large populations, the mutant is favoured if and only if the mutant's spatial average reproductive rate exceeds that of the resident. But environmental heterogeneity elucidates an interesting asymmetry between the mutant and the resident. Specifically, mutant heterogeneity suppresses its fixation probability; if this heterogeneity is strong enough, it can even completely offset the effects of selection (including in large populations). By contrast, resident heterogeneity has no effect on a mutant's fixation probability in large populations and can amplify it in small populations.

7.
J Theor Biol ; 457: 170-179, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30172691

RESUMO

The evolution of multicellularity was a major transition in the history of life on earth. Conditions under which multicellularity is favored have been studied theoretically and experimentally. But since the construction of a multicellular organism requires multiple rounds of cell division, a natural question is whether these cell divisions should be synchronous or not. We study a population model in which there compete simple multicellular organisms that grow by either synchronous or asynchronous cell divisions. We demonstrate that natural selection can act differently on synchronous and asynchronous cell division, and we offer intuition for why these phenotypes are generally not neutral variants of each other.


Assuntos
Ciclo Celular/fisiologia , Evolução Molecular , Modelos Biológicos , Seleção Genética
8.
PLoS One ; 12(10): e0187000, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29084232

RESUMO

The unwelcome evolution of malignancy during cancer progression emerges through a selection process in a complex heterogeneous population structure. In the present work, we investigate evolutionary dynamics in a phenotypically heterogeneous population of stem cells (SCs) and their associated progenitors. The fate of a malignant mutation is determined not only by overall stem cell and non-stem cell growth rates but also differentiation and dedifferentiation rates. We investigate the effect of such a complex population structure on the evolution of malignant mutations. We derive exactly calculated results for the fixation probability of a mutant arising in each of the subpopulations. The exactly calculated results are in almost perfect agreement with the numerical simulations. Moreover, a condition for evolutionary advantage of a mutant cell versus the wild type population is given in the present study. We also show that microenvironment-induced plasticity in invading mutants leads to more aggressive mutants with higher fixation probability. Our model predicts that decreasing polarity between stem and non-stem cells' turnover would raise the survivability of non-plastic mutants; while it would suppress the development of malignancy for plastic mutants. The derived results are novel and general with potential applications in nature; we discuss our model in the context of colorectal/intestinal cancer (at the epithelium). However, the model clearly needs to be validated through appropriate experimental data. This novel mathematical framework can be applied more generally to a variety of problems concerning selection in heterogeneous populations, in other contexts such as population genetics, and ecology.


Assuntos
Modelos Biológicos , Neoplasias/patologia , Fenótipo , Humanos , Mutação , Neoplasias/genética , Processos Estocásticos
9.
PLoS Comput Biol ; 13(7): e1005482, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28683103

RESUMO

Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) is characterized by a very poor prognosis and a high likelihood of acquired chemo-resistance. Although tyrosine kinase inhibitor (TKI) therapy has improved clinical outcome, most ALL patients relapse following treatment with TKI due to the development of resistance. We developed an in vitro model of Nilotinib-resistant Ph+ leukemia cells to investigate whether low dose radiation (LDR) in combination with TKI therapy overcome chemo-resistance. Additionally, we developed a mathematical model, parameterized by cell viability experiments under Nilotinib treatment and LDR, to explain the cellular response to combination therapy. The addition of LDR significantly reduced drug resistance both in vitro and in computational model. Decreased expression level of phosphorylated AKT suggests that the combination treatment plays an important role in overcoming resistance through the AKT pathway. Model-predicted cellular responses to the combined therapy provide good agreement with experimental results. Augmentation of LDR and Nilotinib therapy seems to be beneficial to control Ph+ leukemia resistance and the quantitative model can determine optimal dosing schedule to enhance the effectiveness of the combination therapy.


Assuntos
Quimiorradioterapia/métodos , Modelos Biológicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Simulação por Computador , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Resultado do Tratamento
10.
J Theor Biol ; 403: 143-158, 2016 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-27179461

RESUMO

Evolutionary game dynamics are often studied in the context of different population structures. Here we propose a new population structure that is inspired by simple multicellular life forms. In our model, cells reproduce but can stay together after reproduction. They reach complexes of a certain size, n, before producing single cells again. The cells within a complex derive payoff from an evolutionary game by interacting with each other. The reproductive rate of cells is proportional to their payoff. We consider all two-strategy games. We study deterministic evolutionary dynamics with mutations, and derive exact conditions for selection to favor one strategy over another. Our main result has the same symmetry as the well-known sigma condition, which has been proven for stochastic game dynamics and weak selection. For a maximum complex size of n=2 our result holds for any intensity of selection. For n≥3 it holds for weak selection. As specific examples we study the prisoner's dilemma and hawk-dove games. Our model advances theoretical work on multicellularity by allowing for frequency-dependent interactions within groups.


Assuntos
Células/metabolismo , Teoria dos Jogos , Proliferação de Células , Comportamento Cooperativo , Modelos Biológicos , Taxa de Mutação , Análise Numérica Assistida por Computador , Fenótipo
11.
Math Biosci ; 272: 64-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26683105

RESUMO

The cancer stem cell hypothesis has evolved into one of the most important paradigms in cancer research. According to cancer stem cell hypothesis, somatic mutations in a subpopulation of cells can transform them into cancer stem cells with the unique potential of tumour initiation. Stem cells have the potential to produce lineages of non-stem cell populations (differentiated cells) via a ubiquitous hierarchal division scheme. Differentiation of a stem cell into (partially) differentiated cells can happen either symmetrically or asymmetrically. The selection dynamics of a mutant cancer stem cell should be investigated in the light of a stem cell proliferation hierarchy and presence of a non-stem cell population. By constructing a three-compartment Moran-type model composed of normal stem cells, mutant (cancer) stem cells and differentiated cells, we derive the replicator dynamics of stem cell frequencies where asymmetric differentiation and differentiated cell death rates are included in the model. We determine how these new factors change the conditions for a successful mutant invasion and discuss the variation on the steady state fraction of the population as different model parameters are changed. By including the phenotypic plasticity/dedifferentiation, in which a progenitor/differentiated cell can transform back into a cancer stem cell, we show that the effective fitness of mutant stem cells is not only determined by their proliferation and death rates but also according to their dedifferentiation potential. By numerically solving the model we derive the phase diagram of the advantageous and disadvantageous phases of cancer stem cells in the space of proliferation and dedifferentiation potentials. The result shows that at high enough dedifferentiation rates even a previously disadvantageous mutant can take over the population of normal stem cells. This observation has implications in different areas of cancer research including experimental observations that imply metastatic cancer stem cell types might have lower proliferation potential than other stem cell phenotypes while showing much more phenotypic plasticity and can undergo clonal expansion.


Assuntos
Carcinogênese , Fenômenos Fisiológicos Celulares , Modelos Teóricos , Células-Tronco Neoplásicas
12.
R Soc Open Sci ; 2(4): 140465, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26064637

RESUMO

Evolutionary models on graphs, as an extension of the Moran process, have two major implementations: birth-death (BD) models (or the invasion process) and death-birth (DB) models (or voter models). The isothermal theorem states that the fixation probability of mutants in a large group of graph structures (known as isothermal graphs, which include regular graphs) coincides with that for the mixed population. This result has been proved by Lieberman et al. (2005 Nature 433, 312-316. (doi:10.1038/nature03204)) in the case of BD processes, where mutants differ from the wild-types by their birth rate (and not by their death rate). In this paper, we discuss to what extent the isothermal theorem can be formulated for DB processes, proving that it only holds for mutants that differ from the wild-type by their death rate (and not by their birth rate). For more general BD and DB processes with arbitrary birth and death rates of mutants, we show that the fixation probabilities of mutants are different from those obtained in the mass-action populations. We focus on spatial lattices and show that the difference between BD and DB processes on one- and two-dimensional lattices is non-small even for large population sizes. We support these results with a generating function approach that can be generalized to arbitrary graph structures. Finally, we discuss several biological applications of the results.

13.
Radiat Environ Biophys ; 54(1): 25-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25404281

RESUMO

Although the survival rate of cancer patients has significantly increased due to advances in anti-cancer therapeutics, one of the major side effects of these therapies, particularly radiotherapy, is the potential manifestation of radiation-induced secondary malignancies. In this work, a novel evolutionary stochastic model is introduced that couples short-term formalism (during radiotherapy) and long-term formalism (post-treatment). This framework is used to estimate the risks of second cancer as a function of spontaneous background and radiation-induced mutation rates of normal and pre-malignant cells. By fitting the model to available clinical data for spontaneous background risk together with data of Hodgkin's lymphoma survivors (for various organs), the second cancer mutation rate is estimated. The model predicts a significant increase in mutation rate for some cancer types, which may be a sign of genomic instability. Finally, it is shown that the model results are in agreement with the measured results for excess relative risk (ERR) as a function of exposure age and that the model predicts a negative correlation of ERR with increase in attained age. This novel approach can be used to analyze several radiotherapy protocols in current clinical practice and to forecast the second cancer risks over time for individual patients.


Assuntos
Modelos Biológicos , Taxa de Mutação , Neoplasias Induzidas por Radiação/genética , Segunda Neoplasia Primária/genética , Fatores Etários , Evolução Molecular , Humanos , Neoplasias Induzidas por Radiação/epidemiologia , Segunda Neoplasia Primária/epidemiologia , Risco
14.
Theor Biol Med Model ; 11: 49, 2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25416304

RESUMO

BACKGROUND: Estimating the required dose in radiotherapy is of crucial importance since the administrated dose should be sufficient to eradicate the tumor and at the same time should inflict minimal damage on normal cells. The probability that a given dose and schedule of ionizing radiation eradicates all the tumor cells in a given tissue is called the tumor control probability (TCP), and is often used to compare various treatment strategies used in radiation therapy. METHOD: In this paper, we aim to investigate the effects of including cell-cycle phase on the TCP by analyzing a stochastic model of a tumor comprised of actively dividing cells and quiescent cells with different radiation sensitivities. Moreover, we use a novel numerical approach based on the method of characteristics for partial differential equations, validated by the Gillespie algorithm, to compute the TCP as a function of time. RESULTS: We derive an exact phase-diagram for the steady-state TCP of the model and show that at high, clinically-relevant doses of radiation, the distinction between active and quiescent tumor cells (i.e. accounting for cell-cycle effects) becomes of negligible importance in terms of its effect on the TCP curve. However, for very low doses of radiation, these proportions become significant determinants of the TCP. We also present the results of TCP as a function of time for different values of asymmetric division factor. CONCLUSION: We observe that our results differ from the results in the literature using similar existing models, even though similar parameters values are used, and the reasons for this are discussed.


Assuntos
Ciclo Celular , Proliferação de Células , Neoplasias/prevenção & controle , Probabilidade , Processos Estocásticos , Humanos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...