Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174579, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38981535

RESUMO

The current status of environmental pollution by heavy metals (HMs) will affect the entire ecosystem components. The results obtained so far indicate that some plants can be effective in removing toxic metals from the soil. For this purpose, the phytoremediation ability of three fleshy ornamental plants; cactus (Opuntia humifusa), kalanchoe (Kalanchoe blossfeldiana) and bryophyllum (Bryophyllum delagoensis), was evaluated under the stress of HMs. These succulents are known for their remarkable adaptive capabilities, allowing them to thrive in harsh environmental conditions, including those with high levels of contaminants. Their robust nature, efficient water-use strategies, and proven potential for heavy metal accumulation made them viable candidates for investigating their phytoremediation potential. This experiment was performed as factorial based on completely randomized block design with two factors; the first factor included the type of plant in 3 levels (cactus, kalanchoe and bryophyllum) and the second one included the type of metal in 5 levels (control, silver, cadmium, lead and nickel) in 3 repetitions. The concentration of each salt used was 100 ppm. The measured parameters included stem height, relative growth, diameter, dry matter percentage of root and shoot, chlorophyll a, b and total chlorophyll, carotenoid, anthocyanin, proline, and elements of nickel, silver, lead and cadmium, as well biological concentration factor. The results showed that the highest amount of final stem height, relative growth, dry matter percentage of shoot and the highest amount of chlorophyll a and b, carotenoid and anthocyanin were obtained in bryophyllum. Also, the results of mean comparison of the data related to the effect of metal type on the plants showed that the highest amount of carotenoid, anthocyanin and biological concentration factor were induced by cadmium. On the other hand, the highest and lowest amount of proline as well anthocyanin and proline were induced by silver and lead, respectively. Totally, bryophyllum had a high resistance to HMs and the examined HMs had less effect on the growth of this plant. Cactus, among trial species, exhibited superior potential for HM absorption compared to kalanchoe and bryophyllum. The study underscores cactus as an excellent phytoremediator.

2.
Plants (Basel) ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794435

RESUMO

The damask rose (Rosa damascena Mill.) is an ornamental-medicinal plant from the Rosaceae family, and its aromatic compounds and essential oils are applied globally in the food, cosmetic, and pharmaceutical industries. Due to its economic value, this research aimed to establish a protocol for an efficient, rapid, and cost-effective method for in vitro shoot multiplication and rooting of the R. damascena 'Kashan' and 'Hervy Azerbaijan' genotypes. Nodal segments (as primary explants) were cultured on the Murashige and Skoog (MS) medium with combinations of various plant growth regulators (PGRs) such as gibberellic acid (GA3), 6-benzylaminopurine (BAP), and indole-3-butyric acid (IBA), as well as a PGR-like substance, phloroglucinol (PG), vitamins such as ascorbic acid (AA), and activated carbon in the form of active charcoal (AC). For the establishment stage, 0.1 mg·L-1 PG, 0.2 mg·L-1 GA3, and 1 mg·L-1 BAP were added to the media. Secondary explants (nodal segments containing axillary buds produced from primary explants) were obtained after 30 days of in vitro culture and transferred to the proliferation media supplemented with different concentrations of BAP (0, 0.5, 1, 1.5, 2, and 2.5 mg·L-1) and GA3 (0, 0.1, 0.2, 0.4, 0.8, and 1 mg·L-1) together with 0.1 mg·L-1 PG and 20 mg·L-1 of AA. The rooting media were augmented with different concentrations of BAP and GA3 with 0.1 mg·L-1 of IBA, PG and 20 mg·L-1 of AA and AC. The results showed that the highest regeneration coefficient (4.29 and 4.28) and the largest number of leaves (23.33-24.33) were obtained in the explants grown on the medium supplemented with 2 mg·L-1 BAP and 0.4 mg·L-1 GA3 for the 'Kashan' and 'Hervy Azerbaijan' genotypes, respectively. Likewise, this PGR combination provided the shortest time until bud break (approximately 6.5 days) and root emergence (approximately 10 days) in both genotypes. The highest number of shoots (4.78 per explant) and roots (3.96) was achieved in this medium in the 'Kashan' rose. Stem and root lengths, as well as stem and root fresh and dry weights, were also analyzed. In most measured traits, the lowest values were found in the PGRs-free control medium. Rooted plantlets were transferred to pots filled with perlite and peat moss in a 2:1 proportion and were acclimatized to ambient greenhouse conditions with a mean 90.12% survival rate. This research contributes significantly to our understanding of Damask rose propagation and has practical implications for the cosmetic and ornamental plant industries. By offering insights into the manipulation of regeneration processes, our study opens up new possibilities for the effective production of high-quality plant material.

3.
Cells ; 11(17)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36078051

RESUMO

Peanut stem white rot caused by Sclerotium rolfsii Sacc. is a soil-borne disease that is widely prevailing across peanut farms, leading to serious economic losses. Screening for biocontrol agents against this pathogen is urgent. In this research, 166 fungal isolates including 136 isolates of S. rolfsii and 30 isolates of antagonistic endophytic fungi were obtained from a total of 220 samples collected from peanut farms in Guilan province, Iran. After morphological and molecular identification, six superior endophytic isolates were finally selected for the in vitro and greenhouse trials, including four isolates from Trichoderma viride, Trichoderma virens, Penicillium decaturense, and Aspergillus flavus and two isolates from Penicillium rubens. Four methods of biocontrol were used during the in vitro phase, i.e., dual culture, volatile metabolites assay, non-volatile metabolites assay (culture extract), and slide culture. It was found that T. virens had the highest capability of suppressing the mycelial growth of S. rolfsii in the dual culture method (90.98%). As for the volatile metabolites assay, the most effective isolates in inhibiting the pathogen's mycelial growth were P. rubens (MN395854.1) and A. flavus (84.30% and 73.50% inhibition, respectively). In the non-volatile metabolites method, the isolates that performed the best in suppressing the mycelial growth of S. rolfsii were T. viride and P. rubens (MN395854.1) with 91.80% and 90.20% inhibitory effects, respectively. On the other hand, in the slide culture method, all isolates, except for T. virens and T. viride, successfully controlled the development of S. rolfsii hyphae. The greenhouse trials also supported the effectiveness of endophytic fungi in controlling the pathogen on the host plants. According to the results, T. viride, A. flavus, and P. rubens (MN395854.1) were 44%, 42%, and 38% effective in alleviating the disease incidence and severity. Moreover, the application of these antagonistic fungi in the greenhouse conditions increased the height, fresh weight, and dry weight of the Arachis hypogaea plants infected with the disease causal agent compared to the plants treated only with the pathogen. The results of the in vitro and greenhouse experiments revealed that the endophytic fungi occurring in the natural microbiota of peanut are capable of bio-controlling S. rolfsii, the causal agent of peanut stem white rot disease. These findings shed new insights into the possible resistance induction in A. hypogaea plants through biological protection.


Assuntos
Arachis , Basidiomycota , Arachis/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
4.
Biology (Basel) ; 11(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36138761

RESUMO

The rice sheath blight disease, caused by Rhizoctonia solani J.G. Kühn fungus, is a major disease of Oryza sativa L. occurring all over the world. Therefore, efforts need to be undertaken to limit the spread of this pathogen, preferably by using environmentally friendly methods. In the present study, 57 fungal isolates were recovered by surface sterilization technique from 120 rice samples collected from paddy fields in Guilan province, Iran. Biological characterizations of the isolated taxa were performed in vitro, in the dual culture, volatile metabolites, and slide culture methods. Among the studied isolates, Trichoderma virens (J. H. Miller, Giddens and A. A. Foster) Arx was most effective in inhibiting the mycelial growth of R. solani in the dual culture (44.16% inhibition level), while Aspergillus fumigatus Fresen and T. virens had a 62.50-68.75% inhibition efficiency by volatile metabolites. In the slide culture, all of the isolates, except for T. harzianum Rifai, were effective in inhibiting the hyphae growth of R. solani. Under greenhouse conditions, rice plants inoculated with these potential antagonistic fungi showed a reduction in disease severity by even 41.4% as in the case of T. virens. Moreover, phenotypic properties of rice, such as plant height, fresh weight, and dry weight were increased in the plants inoculated with all antagonistic fungi tested, compared to the infected plants, except for the fresh weight of plants inoculated with Curnularia lunata (Wakker) Boedijn. The present in vivo and in vitro studies revealed that T. virens and A. fumigatus are the most effective antagonists in rice sheath blight disease control and could be applied in agricultural practice.

5.
Biology (Basel) ; 11(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35741368

RESUMO

Horticultural crops comprise various economic species extending from fruits, nuts, vegetables, spices and condiments, ornamentals, aromatic, and medicinal plants. Ornamental and fruit plants are produced mainly for their nutritional and aesthetic values, respectively. Unfortunately, many tropical and subtropical species are in danger of extinction because of climate change and (a)biotic stresses. It is imperative to preserve the germplasms of these species for the present and future genetic improvement programs. Cryopreservation, i.e., maintenance of tissues at the ultralow temperature of liquid nitrogen, is a promising long-term preservation technique, alternative to seed or in vitro banks, which can be applied for both vegetatively and generatively (through seeds) propagated crops, including those with recalcitrant seeds. It is a technology of choice not only for the preservation of plant biodiversity but also for virus elimination in the proficient administration of large-scale micropropagation. The main advantages of cryopreservation are the lowering of in vitro culture expenditures, needed space, contamination risk, and operator errors. However, tropical species are temperature delicate and one of the foremost challenging issues is preconditioning treatments that stimulate physiological reactions to sufficiently enhance tolerance to dehydration and cryogenic procedures. In recent years, several cryopreservation methods based on encapsulation-vitrification, droplet-vitrification, the use of aluminum cryo-plates, and cryo-mesh have been established. Combined cryo-techniques, gene/DNA conservation, as well as studies on perceiving bio-molecular events and exploring the multistage process from the beginning to end of cryopreservation are receiving more emphasis. The development of cryobiomics delivers a conceptual framework to assess the significance of cell signaling mechanisms on cellular functions, the influence of cryoinjury factors on sample viability, and the implications for genetic stability following cryo-storage. The aim of this mini-review article is to provide a succinct synthesis of the developed cryogenic procedures and their use for the storage and exchange of genetic resources of tropical and subtropical horticultural crops, particularly fruit crops and ornamental plants under the threat of extinction.

6.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200414

RESUMO

Numerous environmental and endogenous factors affect the level of genetic diversity in natural populations. Genetic variability is the cornerstone of evolution and adaptation of species. However, currently, more and more plant species and local varieties (landraces) are on the brink of extinction due to anthropopression and climate change. Their preservation is imperative for the sake of future breeding programs. Gene banks have been created worldwide to conserve different plant species of cultural and economic importance. Many of them apply cryopreservation, a conservation method in which ultra-low temperatures (-135 °C to -196 °C) are used for long-term storage of tissue samples, with little risk of variation occurrence. Cells can be successfully cryopreserved in liquid nitrogen (LN) when the adverse effect of ice crystal formation and growth is mitigated by the removal of water and the formation of the so-called biological glass (vitrification). This state can be achieved in several ways. The involvement of key cold-regulated genes and proteins in the acquisition of cold tolerance in plant tissues may additionally improve the survival of LN-stored explants. The present review explains the importance of cryostorage in agronomy and presents an overview of the recent works accomplished with this strategy. The most widely used cryopreservation techniques, classic and modern cryoprotective agents, and some protocols applied in crops are considered to understand which parameters provide the establishment of high quality and broadly applicable cryopreservation. Attention is also focused on the issues of genetic integrity and functional genomics in plant cryobiology.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Criopreservação/métodos , Crioprotetores/farmacologia , Melhoramento Vegetal , Brotos de Planta/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Vitrificação , Protoplastos
7.
Biosci. j. (Online) ; 33(2): 321-332, mar./apr. 2017. tab
Artigo em Inglês | LILACS | ID: biblio-966129

RESUMO

Early leaf yellowing in cut alstroemeria (Alstroemeria aurantiaca) flowers before flower development and petal abscission is an important limiting postharvest quality and vase life factors. Early leaf senescence reduces postharvest longevity of cut flowers and promotes petal's wilting. A study was made to evaluate the response of cut alstroemeria flowers at varying concentrations of cycloheximide (CHI) (50, 100 and 200 mg l-1), coconut water (5, 10 and 20%) and 6-benzyladenine (BA) (50, 100 and 200 mg l-1). CHI, coconut water and BA extended the vase life at all concentrations compared to the control, but coconut water at 5% concentration (with 17.39 days) was the most effective treatment. Control cut flowers showed the least vase life (10.76 days). Ethylene production in cut flowers promoted flower senescence. All concentrations of CHI, coconut water and BA delayed ethylene production compared to the control. Treatment of cut flowers with coconut water at concentration of 5% maintained the highest fresh weight of flowers and increased the content of water uptake. The chlorophyll degradation was significantly reduced by the application of CHI, coconut water and BA. The maximum content of membrane's lipid peroxidation and antioxidant enzymes activity (super oxide dismutase and peroxidase) was obtained in control cut flowers. Thus, 5% fresh coconut water has the potential to be applied as vase solution (preservative medium) due to prolongs of cut alstroemeria flowers.


O amarelecimento precoce das folhas em flores de alstroemeria (Alstroemeria aurantiaca) cortadas antes do desenvolvimento floral e da abscisão de pétalas é um importante limitante da qualidade pós-colheita e dos fatores de vida do vaso. A senescência precoce da folha reduz a longevidade pós-colheita das flores cortadas e promove o murchamento da pétala. Um estudo foi realizado para avaliar a resposta de flores de alstroemeria cortadas em diferentes concentrações de cicloheximida (CHI) (50, 100 e 200 mg l-1), água de coco (5, 10 e 20%) e 6-benziladenina (BA) 50, 100 e 200 mg l-1). CHI, água de coco e BA prolongou a vida do vaso em todas as concentrações em comparação com o controle, mas a água de coco a 5% de concentração (com 17,39 dias) foi o tratamento mais eficaz. As flores cortadas de controlo mostraram a menor vida útil do vaso (10,76 dias). A produção de etileno em flores cortadas promoveu a senescência da flor. Todas as concentrações de CHI, água de coco e BA atrasaram a produção de etileno em comparação com o controle. O tratamento de flores cortadas com água de coco a uma concentração de 5% manteve o maior peso fresco de flores e aumentou o conteúdo de absorção de água. A degradação da clorofila foi significativamente reduzida pela aplicação de CHI, água de coco e BA. O teor máximo de atividade de enzimas antioxidantes e de peroxidação lipídica da membrana (super óxido dismutase e peroxidase) foi obtido em flores cortadas de controle. Assim, 5% de água de coco fresca tem potencial para ser aplicada como solução de vaso (meio de conservação) devido a prolongamentos das flores de alstroemeria cortadas.


Assuntos
Reguladores de Crescimento de Plantas , Cicloeximida , Alstroemeria , Alimentos de Coco
8.
J Environ Biol ; 36(1): 215-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26536795

RESUMO

Rose is an ornamental plant which contains one of the world's top cut flowers. Vase life of cut rose flower is short. Extracts of Mentha pulegium and 8-hydroxy quinoline sulphate (8-HQS) were used as two preservative solutions, aiming to extend the vase life of cut rose (Rosa hybrid L.) flowers. Rose flowers were treated with a vase solution containing the extract of M. pulegium, at concentrations of 0, 10, 20 and 30%, in combination with 8-HQS at concentrations of 0, 200, 400 and 600 mg l(-1). Longevity of cut roses flowers was determined on the basis of wilting and chlorophyll retention. Cut roses flowers were kept at room temperature (20 ± 2 degrees C) under normal day light and natural ventilation. The vase life of cut flowers studied was prolonged by all 8-HQS and extract treatments. The best concentration of 8-HQS and extractwere 400 mg l(-1) and 10%, respectively. Our results indicated that the flowers treated with the extract and 8-HQS had longer vase life, higher rate of solution uptake and lower SPAD value (total chlorophyll) compared to the control. Also, cut flowers treated with the extract and 8-HQS had least bacterial colonies. The greatest longevity of vase life by 11.20 and 10.25 days was related to 400 mg I(-1) 8-HQS and 10% of extract, respectively. These treatments improved cut vase life more than the control treatment. The maximum solution uptake (1.85 ml g(-1) f.wt.) and minimum SPAD value (2.19) were calculated in 30% extract along with 200 mg l(-1) 8-HQS, and 200 mg l(-1) 8-HQS, respectively. The lowest number of bacterial colonies (55.75) was obtained in treatment of 600 mg l(-1) 8-HQS. Flower quality of specimens treated with extract and 8-HQS was better than those of the control. The experiments were repeated three times with three replicates and a completely randomized design had been used. The present study concludes that it would be possible to use preservative solutions containing extract of M. pulegium L. and 8-HQS to extend vase life of cut rose (R. hybrida L.) flowers.


Assuntos
Flores/efeitos dos fármacos , Mentha pulegium/química , Oxiquinolina/farmacologia , Extratos Vegetais/farmacologia , Rosa/efeitos dos fármacos , Oxiquinolina/química , Extratos Vegetais/química
9.
J Environ Biol ; 36(1): 273-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26536804

RESUMO

The effect of concentration and application method of chlormequat (cycocel), a plant growth retardant, on plant height and some other traits in Brassica oleracea cultivars 'Kamome White' and 'Nagoya Red' was assessed. Plant growth retardants are commonly applied to limit stem elongation and produce a more compact plant. The experiment was done as a factorial in randomized completely blocks design (RCBD) with four replications. Plants (40 days after transplanting) were sprayed and drenched with 500, 1000 and 1500 mg l(-1) cycocel. In each experiment, control untreated plants. Data were recorded the 60 and 90 days after transplanting. Based on analysis of variance (ANOVA), the effect of different treatments and their interaction on all traits was significant at 0.05 or 0.01 level of probability. Treatment of 1500 mg I(-1) cycocel resulted in about 50 and 20% shorter plants than control plants, 60 and 90 days after transplant. The growth of Brassica oleracea cultivar 'Kamome White' and 'Nagoya Red' decreased with increased cycocel concentration. Foliar sprays of cycocel controlled plant height of both cultivars. Results indicated that the shortest plants (9.94 and 11.59 cm) were those sprayed with 1500 mg l(-1) cycocel in cultivar 'Kamome White' after 60 and 90 days, respectively. The largest number of leaves (33.94) and highest leaf diameter (9.39 cm) occurred in cv. 'Nagoya Red', when drench was used. Maximum dry matter (14.31%) accumulated in cv. 'Nagoya Red', treated with spray.


Assuntos
Brassica rapa/efeitos dos fármacos , Brassica rapa/crescimento & desenvolvimento , Clormequat/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Clormequat/administração & dosagem , Relação Dose-Resposta a Droga
10.
J Environ Biol ; 36(2): 425-31, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25895266

RESUMO

Cut gerbera flowers are sensitive to microbial contamination and have a short vase life. Silver nanoparticles are used in various applications as an antimicrobial agent. An experiment was conducted to determine the effect of different concentrations of SNP and chlorophenol to extend the vase life and postharvest quality of gerbera (Gerberajamesonii cv. 'Balance') cut flowers. Cut gerbera flowers were kept in solutions containing 0, 5, 10 and 20 mg l(-1) SNP and/or 0, 5 and 10 mM chlorophenol for 24 hr; then held in vase solution containing 250 mg l(-1) 8-hydroxyquinoline sulphate and 3% sucrose. The maximum vase life (16.33 days) was observed in flowers held in solution containing 10 mg l(-1) SNP. The 5 mg l(-1) SNP plus 10 mM chlorophenol and 10 mg l(-1) SNP plus 5 mM chlorophenol inhibited bacterial growth in the vase solution. The minimum fresh weight loss (6.48 gr) during the vase period was observed for flowers kept in solution containing 20 mg l(-1)1 SNP. The results revealed that SNP and chlorophenol have the potential to extend vase life and enhanc the postharvest quality of cut gerbera cv. 'Balance' flowers.


Assuntos
Asteraceae/efeitos dos fármacos , Asteraceae/fisiologia , Clorofenóis/farmacologia , Nanopartículas Metálicas/administração & dosagem , Prata/farmacologia , Clorofenóis/administração & dosagem , Relação Dose-Resposta a Droga , Prata/administração & dosagem
11.
J Environ Biol ; 35(5): 833-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25204055

RESUMO

Silver nano-particles (2-5 nm diam.), as antimicrobial agent and boric acid, as ethylene production inhibitor are used for enhancing the quality and vase life of cut flowers. In the present study the effects of a preservative solution containing nano-silver and boric acid on some traits of cut rose (Rosa hybrida L. cv. Yellow Island) including vase life, ethylene production, dry weight percentage, chlorophyll content, flower opening index, beta-carotene of petals and the number of basal stem end bacteria were investigated. The results showed that the effect of nano-silver and boric acid as either solitary or in combination with each other were significant (p < or = 0.01) on vase life, ethylene production and beta-carotene pigment. The effect of nano-silver on the number of bacteria on the end of stem was significant (p < or = 0.01). The highest cut flower longevity (9.69 day) was obtained in pulse-treated flowers with 100 mg l(-1) boric acid. The least ethylene production (0.59 nl(-1) g(-1) h(-1)) was observed in cut rose treated with 100 mg l(-1) boric acid along with 5 mg l(-1) nano-silver. The lowest number of bacteria in the end of stem was calculated in cut flowers treated with the highest concentrations of boric acid (300 mg l(-1)) and nano-silver (20 mg l(-1)).


Assuntos
Ácidos Bóricos , Flores , Nanopartículas , Rosa , Prata
12.
J Environ Biol ; 35(2): 439-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24665775

RESUMO

The present study was conducted to study the individual and combined effect of bio-fertilizer (Barvar-2) and chemical phosphate fertilizer on the floral quality of marigold (Tagetes erecta L.). A factorial experiment was carried out which consisted of two factors: i) inoculation of seed, root and seed + root with bio-fertilizer (Barvar-2) and control; application of chemical phosphorus at 100 mg I(-1), 200 mg l(-1), 300 mg l(-1) and 400 mg l(-1) levels. In this study, flowering time, display life, fresh and dry weight of flower, available soil phosphorus, shoot phosphorus and carotenoid content were evaluated. Results showed that the combined effect of bio- and chemical fertilizer was insignificant (p < 1 and 5%) for most of the characteristics studied except for shoot phosphorus and carotenoid content in petals. The lowest time to flowering (64.67 days) was obtained in seeds and transplant roots inoculation to bio-fertilizer x 400 mg I(-1) P. Maximum display life (25.35), fresh weight (16.20 g), carotenoid content (3.903 mg g(-1) d. wt.) and concentration of P in shoots (0.352%) were observed in transplant roots inoculation to bio-fertilizer x 400 mg I(-1) P.


Assuntos
Fertilizantes/análise , Fosfatos/química , Fosfatos/farmacologia , Tagetes/efeitos dos fármacos , Tagetes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...