Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 50(7): 2606-2615, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33522557

RESUMO

Atomically precise silver nanoclusters (Ag-NCs) are known as a hot research area owing to their brilliant features and they have attracted an immense amount of research attention over the last year. There is a lack of sufficient understanding about the Ag-NC synthesis mechanisms that result in optimal silver nanoclusters with an appropriate size, shape, and morphology. In addition, the coexisting flexible coordination of silver ions, the argentophilic interactions, and coordination bonds result in a high level of sophistication in the self-assembly process. Furthermore, the expansion of clusters by the organic ligand to form a high dimensional structure could be very interesting and useful for novel applications in particular. In this study, a novel two-dimensional 14-nucleus silver poly-cluster was designed and synthesized by the combination of two synthetic methods. The high nucleus silver cluster units are connected together via tetradecafluoroazelaic acid (CF2) and this leads to the high stability of the polymer. This highly stable conductive poly-cluster, with bridging groups of difluoromethylene, displays a high energy density (372 F g-1 at 4.5 A g-1), excellent cycling stability, and great capacity. This nanocluster shows a high power density and long cycle life over 6000 cycles (95%) and can also tolerate a wide range of scan rates (5 mV s-1 to 1 V s-1), meaning it could act as a green energy source.

2.
Inorg Chem ; 60(3): 1523-1532, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471996

RESUMO

A high-nucleus silver nanopolycluster as a new type of silver-based polymer supercapacitor (SSc) by a simple and single-step synthesis process was designed and synthesized. The structural, optical, and electrochemical properties of SSc-2 were determined. This highly stable conductive 3D nanopolycluster shows great cycling stability, large capacity, and high energy density without any modification or doping process and so acts as an excellent SSc (412 F g-1 at 1.5 A g-1). In addition, there was a stable cycling performance (94% capacitance) following 7000 cycles at 3 A g-1 current density. The presence of fluorinated groups, 3D expansion of high-nucleus metallic clusters, and porosity are the advantages of SSc-2 that lead to stability, conductivity, and high capacity, respectively. These results lead to the development of a novel kind of SSc by overcoming the low conductivity and limited capacity challenges without any modification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...