Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 107(17): 177205, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107576

RESUMO

We investigate the interaction of TbPc(2) single molecule magnets (SMMs) with ferromagnetic Ni substrates. Using element-resolved x-ray magnetic circular dichroism, we show that TbPc(2) couples antiferromagnetically to Ni films through ligand-mediated superexchange. This coupling is strongly anisotropic and can be manipulated by doping the interface with electron acceptor or donor atoms. We observe that the relative orientation of the substrate and molecule anisotropy axes critically affects the SMM magnetic behavior. TbPc(2) complexes deposited on perpendicularly magnetized Ni films exhibit enhanced magnetic remanence compared to SMMs in the bulk. Contrary to paramagnetic molecules pinned to a ferromagnetic support layer, we find that TbPc(2) can be magnetized parallel or antiparallel to the substrate, opening the possibility to exploit SMMs in spin valve devices.

2.
J Phys Condens Matter ; 19(31): 315210, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-21694110

RESUMO

What happens to ferromagnetism at the surfaces and interfaces of manganites? With the competition between charge, spin, and orbital degrees of freedom, it is not surprising that the surface behaviour may be profoundly different to that of the bulk. Using a powerful combination of two surface probes, tunnelling and polarized x-ray interactions, this paper reviews our work on the nature of the electronic and magnetic states at manganite surfaces and interfaces. The general observation is that ferromagnetism is not the lowest energy state at the surface or interface, which results in a suppression or even loss of ferromagnetic order at the surface. Two cases will be discussed ranging from the surface of the quasi-2D bilayer manganite (La(2-2x)Sr(1+2x)Mn(2)O(7)) to the 3D perovskite (La(2/3)Sr(1/3)MnO(3))/SrTiO(3) interface. For the bilayer manganite, which is ferromagnetic and conducting in the bulk, these probes present clear evidence for an intrinsic insulating non-ferromagnetic surface layer atop adjacent subsurface layers that display the full bulk magnetization. This abrupt intrinsic magnetic interface is attributed to the weak inter-bilayer coupling native to these quasi-two-dimensional materials. This is in marked contrast to the situation for the non-layered manganite system (La(2/3)Sr(1/3)MnO(3)/SrTiO(3)), whose magnetization near the interface is less than half the bulk value at low temperatures and decreases with increasing temperature at a faster rate than that for the bulk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...