Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 6802, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357374

RESUMO

Quantum coupling in arrayed nanostructures can produce novel mesoscale properties such as electronic minibands to improve the performance of optoelectronic devices, including ultra-efficient solar cells and infrared photodetectors. Colloidal PbSe quantum dots (QDs) that self-assemble into epitaxially-fused superlattices (epi-SLs) are predicted to exhibit such collective phenomena. Here, we show the emergence of distinct local electronic states induced by crystalline necks that connect individual PbSe QDs and modulate the bandgap energy across the epi-SL. Multi-probe scanning tunneling spectroscopy shows bandgap modulation from 0.7 eV in the QDs to 1.1 eV at their necks. Complementary monochromated electron energy-loss spectroscopy demonstrates bandgap modulation in spectral mapping, confirming the presence of these distinct energy states from necking. The results show the modification of the electronic structure of a precision-made nanoscale superlattice, which may be leveraged in new optoelectronic applications.

4.
ACS Appl Mater Interfaces ; 11(16): 15111-15121, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30938163

RESUMO

Suppression of electronic defects induced by GeO x at the high- k gate oxide/SiGe interface is critical for implementation of high-mobility SiGe channels in complementary metal-oxide-semiconductor (CMOS) technology. Theoretical and experimental studies have shown that a low defect density interface can be formed with an SiO x-rich interlayer on SiGe. Experimental studies in the literature indicate a better interface formation with Al2O3 in contrast to HfO2 on SiGe; however, the mechanism behind this is not well understood. In this study, the mechanism of forming a low defect density interface between Al2O3/SiGe is investigated using atomic layer deposited (ALD) Al2O3 insertion into or on top of ALD HfO2 gate oxides. To elucidate the mechanism, correlations are made between the defect density determined by impedance measurements and the chemical and physical structures of the interface determined by high-resolution scanning transmission electron microscopy and electron energy loss spectroscopy. The compositional analysis reveals an SiO x rich interlayer for both Al2O3/SiGe and HfO2/SiGe interfaces with the insertion of Al2O3 into or on top of the HfO2 oxide. The data is consistent with the Al2O3 insertion inducing decomposition of the GeO x from the interface to form an electrically passive, SiO x rich interface on SiGe. This mechanism shows that nanolaminate gate oxide chemistry cannot be interpreted as resulting from a simple layer-by-layer ideal ALD process, because the precursor or its reaction products can diffuse through the oxide during growth and react at the semiconductor interface. This result shows that in scaled CMOS, remote oxide ALD (oxide ALD on top of the gate oxide) can be used to suppress electronic defects at gate oxide semiconductor interfaces by oxygen scavenging.

5.
ACS Appl Mater Interfaces ; 10(36): 30794-30802, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30073827

RESUMO

The superior carrier mobility of SiGe alloys make them a highly desirable channel material in complementary metal-oxide-semiconductor (CMOS) transistors. Passivation of the SiGe surface and the associated minimization of interface defects between SiGe channels and high- k dielectrics continues to be a challenge for fabrication of high-performance SiGe CMOS. A primary source of interface defects is interfacial GeO x. This interfacial oxide can be decomposed using an oxygen-scavenging reactive gate metal, which nearly eliminates the interfacial oxides, thereby decreasing the amount of GeO x at the interface; the remaining ultrathin interlayer is consistent with a SiO x-rich interface. Density functional theory simulations demonstrate that a sub-0.5 nm thick SiO x-rich surface layer can produce an electrically passivated HfO2/SiGe interface. To form this SiO x-rich interlayer, metal gate stack designs including Al/HfO2/SiGe and Pd/Ti/TiN/nanolaminate (NL)/SiGe (NL: HfO2-Al2O3) were investigated. As compared to the control Ni-gated devices, those with Al/HfO2/SiGe gate stacks demonstrated more than an order of magnitude reduction in interface defect density with a sub-0.5 nm SiO x-rich interfacial layer. To further increase the oxide capacitance, the devices were fabricated with a Ti oxygen scavenging layer separated from the HfO2 by a conductive TiN diffusion barrier (remote scavenging). The Pd/Ti/TiN/NL/SiGe structures exhibited significant capacitance enhancement along with a reduction in interface defect density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...