Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(28): eadg9644, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436975

RESUMO

Diagnosis of neurodegenerative disorders (NDDs) including Parkinson's disease and Alzheimer's disease is challenging owing to the lack of tools to detect preclinical biomarkers. The misfolding of proteins into oligomeric and fibrillar aggregates plays an important role in the development and progression of NDDs, thus underscoring the need for structural biomarker-based diagnostics. We developed an immunoassay-coupled nanoplasmonic infrared metasurface sensor that detects proteins linked to NDDs, such as alpha-synuclein, with specificity and differentiates the distinct structural species using their unique absorption signatures. We augmented the sensor with an artificial neural network enabling unprecedented quantitative prediction of oligomeric and fibrillar protein aggregates in their mixture. The microfluidic integrated sensor can retrieve time-resolved absorbance fingerprints in the presence of a complex biomatrix and is capable of multiplexing for the simultaneous monitoring of multiple pathology-associated biomarkers. Thus, our sensor is a promising candidate for the clinical diagnosis of NDDs, disease monitoring, and evaluation of novel therapies.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/diagnóstico , Inteligência Artificial , Doença de Alzheimer/diagnóstico , Doença de Parkinson/diagnóstico , Biomarcadores
2.
Adv Mater ; 33(14): e2006054, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33615570

RESUMO

Insights into the fascinating molecular world of biological processes are crucial for understanding diseases, developing diagnostics, and effective therapeutics. These processes are complex as they involve interactions between four major classes of biomolecules, i.e., proteins, nucleic acids, carbohydrates, and lipids, which makes it important to be able to discriminate between all these different biomolecular species. In this work, a deep learning-augmented, chemically-specific nanoplasmonic technique that enables such a feat in a label-free manner to not disrupt native processes is presented. The method uses a highly sensitive multiresonant plasmonic metasurface in a microfluidic device, which enhances infrared absorption across a broadband mid-IR spectrum and in water, despite its strongly overlapping absorption bands. The real-time format of the optofluidic method enables the collection of a vast amount of spectrotemporal data, which allows the construction of a deep neural network to discriminate accurately between all major classes of biomolecules. The capabilities of the new method are demonstrated by monitoring of a multistep bioassay containing sucrose- and nucleotides-loaded liposomes interacting with a small, lipid membrane-perforating peptide. It is envisioned that the presented technology will impact the fields of biology, bioanalytics, and pharmacology from fundamental research and disease diagnostics to drug development.


Assuntos
Bioensaio/métodos , Aprendizado Profundo , Raios Infravermelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...