Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSystems ; 7(6): e0016522, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36226969

RESUMO

Genotype-fitness maps of evolution have been well characterized for biological components, such as RNA and proteins, but remain less clear for systems-level properties, such as those of metabolic and transcriptional regulatory networks. Here, we take multi-omics measurements of 6 different E. coli strains throughout adaptive laboratory evolution (ALE) to maximal growth fitness. The results show the following: (i) convergence in most overall phenotypic measures across all strains, with the notable exception of divergence in NADPH production mechanisms; (ii) conserved transcriptomic adaptations, describing increased expression of growth promoting genes but decreased expression of stress response and structural components; (iii) four groups of regulatory trade-offs underlying the adjustment of transcriptome composition; and (iv) correlates that link causal mutations to systems-level adaptations, including mutation-pathway flux correlates and mutation-transcriptome composition correlates. We thus show that fitness landscapes for ALE can be described with two layers of causation: one based on system-level properties (continuous variables) and the other based on mutations (discrete variables). IMPORTANCE Understanding the mechanisms of microbial adaptation will help combat the evolution of drug-resistant microbes and enable predictive genome design. Although experimental evolution allows us to identify the causal mutations underlying microbial adaptation, it remains unclear how causal mutations enable increased fitness and is often explained in terms of individual components (i.e., enzyme rate) as opposed to biological systems (i.e., pathways). Here, we find that causal mutations in E. coli are linked to systems-level changes in NADPH balance and expression of stress response genes. These systems-level adaptation patterns are conserved across diverse E. coli strains and thus identify cofactor balance and proteome reallocation as dominant constraints governing microbial adaptation.


Assuntos
Adaptação Fisiológica , Escherichia coli , Escherichia coli/genética , NADP/genética , Adaptação Fisiológica/genética , Genótipo , Mutação/genética
2.
Metab Eng ; 69: 50-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763090

RESUMO

Previously, Escherichia coli was engineered to produce isobutyl acetate (IBA). Titers greater than the toxicity threshold (3 g/L) were achieved by using layer-assisted production. To avoid this costly and complex method, adaptive laboratory evolution (ALE) was applied to E. coli for improved IBA tolerance. Over 37 rounds of selective pressure, 22 IBA-tolerant mutants were isolated. Remarkably, these mutants not only tolerate high IBA concentrations, they also produce higher IBA titers. Using whole-genome sequencing followed by CRISPR/Cas9 mediated genome editing, the mutations (SNPs in metH, rho and deletion of arcA) that confer improved tolerance and higher titers were elucidated. The improved IBA titers in the evolved mutants were a result of an increased supply of acetyl-CoA and altered transcriptional machinery. Without the use of phase separation, a strain capable of 3.2-fold greater IBA production than the parent strain was constructed by combing select beneficial mutations. These results highlight the impact improved tolerance has on the production capability of a biosynthetic system.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Acetatos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Laboratórios
3.
PLoS Comput Biol ; 17(2): e1008647, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529205

RESUMO

The availability of bacterial transcriptomes has dramatically increased in recent years. This data deluge could result in detailed inference of underlying regulatory networks, but the diversity of experimental platforms and protocols introduces critical biases that could hinder scalable analysis of existing data. Here, we show that the underlying structure of the E. coli transcriptome, as determined by Independent Component Analysis (ICA), is conserved across multiple independent datasets, including both RNA-seq and microarray datasets. We subsequently combined five transcriptomics datasets into a large compendium containing over 800 expression profiles and discovered that its underlying ICA-based structure was still comparable to that of the individual datasets. With this understanding, we expanded our analysis to over 3,000 E. coli expression profiles and predicted three high-impact regulons that respond to oxidative stress, anaerobiosis, and antibiotic treatment. ICA thus enables deep analysis of disparate data to uncover new insights that were not visible in the individual datasets.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Escherichia coli/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Transcriptoma , Algoritmos , Modelos Lineares , Análise de Componente Principal , RNA-Seq
4.
Nat Commun ; 11(1): 2580, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444610

RESUMO

Current machine learning classifiers have successfully been applied to whole-genome sequencing data to identify genetic determinants of antimicrobial resistance (AMR), but they lack causal interpretation. Here we present a metabolic model-based machine learning classifier, named Metabolic Allele Classifier (MAC), that uses flux balance analysis to estimate the biochemical effects of alleles. We apply the MAC to a dataset of 1595 drug-tested Mycobacterium tuberculosis strains and show that MACs predict AMR phenotypes with accuracy on par with mechanism-agnostic machine learning models (isoniazid AUC = 0.93) while enabling a biochemical interpretation of the genotype-phenotype map. Interpretation of MACs for three antibiotics (pyrazinamide, para-aminosalicylic acid, and isoniazid) recapitulates known AMR mechanisms and suggest a biochemical basis for how the identified alleles cause AMR. Extending flux balance analysis to identify accurate sequence classifiers thus contributes mechanistic insights to GWAS, a field thus far dominated by mechanism-agnostic results.


Assuntos
Farmacorresistência Bacteriana , Estudo de Associação Genômica Ampla , Aprendizado de Máquina , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Ácido Aminossalicílico/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Genoma Microbiano , Isoniazida/farmacologia , Pirazinamida/farmacologia , Reprodutibilidade dos Testes
5.
PLoS Comput Biol ; 16(3): e1007608, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32119670

RESUMO

The evolution of antimicrobial resistance (AMR) poses a persistent threat to global public health. Sequencing efforts have already yielded genome sequences for thousands of resistant microbial isolates and require robust computational tools to systematically elucidate the genetic basis for AMR. Here, we present a generalizable machine learning workflow for identifying genetic features driving AMR based on constructing reference strain-agnostic pan-genomes and training random subspace ensembles (RSEs). This workflow was applied to the resistance profiles of 14 antimicrobials across three urgent threat pathogens encompassing 288 Staphylococcus aureus, 456 Pseudomonas aeruginosa, and 1588 Escherichia coli genomes. We find that feature selection by RSE detects known AMR associations more reliably than common statistical tests and previous ensemble approaches, identifying a total of 45 known AMR-conferring genes and alleles across the three organisms, as well as 25 candidate associations backed by domain-level annotations. Furthermore, we find that results from the RSE approach are consistent with existing understanding of fluoroquinolone (FQ) resistance due to mutations in the main drug targets, gyrA and parC, in all three organisms, and suggest the mutational landscape of those genes with respect to FQ resistance is simple. As larger datasets become available, we expect this approach to more reliably predict AMR determinants for a wider range of microbial pathogens.


Assuntos
Biologia Computacional/métodos , Farmacorresistência Bacteriana/genética , Genoma Bacteriano/genética , Antibacterianos/farmacologia , Anti-Infecciosos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/genética , Fluoroquinolonas/farmacologia , Humanos , Aprendizado de Máquina , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Staphylococcus aureus/genética , Sequenciamento Completo do Genoma/métodos
6.
mBio ; 10(4)2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455646

RESUMO

O-antigens are glycopolymers in lipopolysaccharides expressed on the cell surface of Gram-negative bacteria. Variability in the O-antigen structure constitutes the basis for the establishment of the serotyping schema. We pursued a two-pronged approach to define the basis for O-antigen structural diversity. First, we developed a bottom-up systems biology approach to O-antigen metabolism by building a reconstruction of Salmonella O-antigen biosynthesis and used it to (i) update 410 existing Salmonella strain-specific metabolic models, (ii) predict a strain's serogroup and its O-antigen glycan synthesis capability (yielding 98% agreement with experimental data), and (iii) extend our workflow to more than 1,400 Gram-negative strains. Second, we used a top-down pangenome analysis to elucidate the genetic basis for intraserogroup O-antigen structural variations. We assembled a database of O-antigen gene islands from over 11,000 sequenced Salmonella strains, revealing (i) that gene duplication, pseudogene formation, gene deletion, and bacteriophage insertion elements occur ubiquitously across serogroups; (ii) novel serotypes in the group O:4 B2 variant, as well as an additional genotype variant for group O:4, and (iii) two novel O-antigen gene islands in understudied subspecies. We thus comprehensively defined the genetic basis for O-antigen diversity.IMPORTANCE Lipopolysaccharides are a major component of the outer membrane in Gram-negative bacteria. They are composed of a conserved lipid structure that is embedded in the outer leaflet of the outer membrane and a polysaccharide known as the O-antigen. O-antigens are highly variable in structure across strains of a species and are crucial to a bacterium's interactions with its environment. They constitute the first line of defense against both the immune system and bacteriophage infections and have been shown to mediate antimicrobial resistance. The significance of our research is in identifying the metabolic and genetic differences within and across O-antigen groups in Salmonella strains. Our effort constitutes a first step toward characterizing the O-antigen metabolic network across Gram-negative organisms and a comprehensive overview of genetic variations in Salmonella.


Assuntos
Genoma Bacteriano/genética , Lipopolissacarídeos/imunologia , Antígenos O/genética , Salmonella/imunologia , Biologia de Sistemas , Variação Genética , Redes e Vias Metabólicas , Antígenos O/biossíntese , Antígenos O/imunologia , Salmonella/genética , Sorogrupo , Sorotipagem
7.
Nat Commun ; 9(1): 4306, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333483

RESUMO

Mycobacterium tuberculosis is a serious human pathogen threat exhibiting complex evolution of antimicrobial resistance (AMR). Accordingly, the many publicly available datasets describing its AMR characteristics demand disparate data-type analyses. Here, we develop a reference strain-agnostic computational platform that uses machine learning approaches, complemented by both genetic interaction analysis and 3D structural mutation-mapping, to identify signatures of AMR evolution to 13 antibiotics. This platform is applied to 1595 sequenced strains to yield four key results. First, a pan-genome analysis shows that M. tuberculosis is highly conserved with sequenced variation concentrated in PE/PPE/PGRS genes. Second, the platform corroborates 33 genes known to confer resistance and identifies 24 new genetic signatures of AMR. Third, 97 epistatic interactions across 10 resistance classes are revealed. Fourth, detailed structural analysis of these genes yields mechanistic bases for their selection. The platform can be used to study other human pathogens.


Assuntos
Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Aprendizado de Máquina , Mycobacterium tuberculosis/genética , Frequência do Gene , Seleção Genética
8.
Nat Commun ; 9(1): 3771, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218022

RESUMO

Salmonella strains are traditionally classified into serovars based on their surface antigens. While increasing availability of whole-genome sequences has allowed for more detailed subtyping of strains, links between genotype, serovar, and host remain elusive. Here we reconstruct genome-scale metabolic models for 410 Salmonella strains spanning 64 serovars. Model-predicted growth capabilities in over 530 different environments demonstrate that: (1) the Salmonella accessory metabolic network includes alternative carbon metabolism, and cell wall biosynthesis; (2) metabolic capabilities correspond to each strain's serovar and isolation host; (3) growth predictions agree with 83.1% of experimental outcomes for 12 strains (690 out of 858); (4) 27 strains are auxotrophic for at least one compound, including L-tryptophan, niacin, L-histidine, L-cysteine, and p-aminobenzoate; and (5) the catabolic pathways that are important for fitness in the gastrointestinal environment are lost amongst extraintestinal serovars. Our results reveal growth differences that may reflect adaptation to particular colonization sites.


Assuntos
Genoma Bacteriano/genética , Redes e Vias Metabólicas/genética , Salmonella/genética , Sorogrupo , Parede Celular/metabolismo , Genótipo , Fenótipo , Salmonella/metabolismo
9.
BMC Syst Biol ; 12(1): 66, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29890970

RESUMO

BACKGROUND: Escherichia coli is considered a leading bacterial trigger of inflammatory bowel disease (IBD). E. coli isolates from IBD patients primarily belong to phylogroup B2. Previous studies have focused on broad comparative genomic analysis of E. coli B2 isolates, and identified virulence factors that allow B2 strains to reside within human intestinal mucosa. Metabolic capabilities of E. coli strains have been shown to be related to their colonization site, but remain unexplored in IBD-associated strains. RESULTS: In this study, we utilized pan-genome analysis and genome-scale models (GEMs) of metabolism to study metabolic capabilities of IBD-associated E. coli B2 strains. The study yielded three results: i) Pan-genome analysis of 110 E. coli strains (including 53 isolates from IBD studies) revealed discriminating metabolic genes between B2 strains and other strains; ii) Both comparative genomic analysis and GEMs suggested that B2 strains have an advantage in degrading and utilizing sugars derived from mucus glycan, and iii) GEMs revealed distinct metabolic features in B2 strains that potentially allow them to utilize energy more efficiently. For example, B2 strains lack the enzymes to degrade amadori products, but instead rely on neighboring bacteria to convert these substrates into a more readily usable and potentially less sought after product. CONCLUSIONS: Taken together, these results suggest that the metabolic capabilities of B2 strains vary significantly from those of other strains, enabling B2 strains to colonize intestinal mucosa.The results from this study motivate a broad experimental assessment of the nutritional effects on E. coli B2 pathophysiology in IBD patients.


Assuntos
Escherichia coli/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Escherichia coli/genética , Escherichia coli/fisiologia , Genômica , Humanos
10.
Front Microbiol ; 9: 1082, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887846

RESUMO

Two-component systems (TCSs) consist of a histidine kinase and a response regulator. Here, we evaluated the conservation of the AgrAC TCS among 149 completely sequenced Staphylococcus aureus strains. It is composed of four genes: agrBDCA. We found that: (i) AgrAC system (agr) was found in all but one of the 149 strains, (ii) the agr positive strains were further classified into four agr types based on AgrD protein sequences, (iii) the four agr types not only specified the chromosomal arrangement of the agr genes but also the sequence divergence of AgrC histidine kinase protein, which confers signal specificity, (iv) the sequence divergence was reflected in distinct structural properties especially in the transmembrane region and second extracellular binding domain, and (v) there was a strong correlation between the agr type and the virulence genomic profile of the organism. Taken together, these results demonstrate that bioinformatic analysis of the agr locus leads to a classification system that correlates with the presence of virulence factors and protein structural properties.

11.
Front Genet ; 9: 121, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692801

RESUMO

Acinetobacter baumannii has become an urgent clinical threat due to the recent emergence of multi-drug resistant strains. There is thus a significant need to discover new therapeutic targets in this organism. One means for doing so is through the use of high-quality genome-scale reconstructions. Well-curated and accurate genome-scale models (GEMs) of A. baumannii would be useful for improving treatment options. We present an updated and improved genome-scale reconstruction of A. baumannii AYE, named iCN718, that improves and standardizes previous A. baumannii AYE reconstructions. iCN718 has 80% accuracy for predicting gene essentiality data and additionally can predict large-scale phenotypic data with as much as 89% accuracy, a new capability for an A. baumannii reconstruction. We further demonstrate that iCN718 can be used to analyze conserved metabolic functions in the A. baumannii core genome and to build strain-specific GEMs of 74 other A. baumannii strains from genome sequence alone. iCN718 will serve as a resource to integrate and synthesize new experimental data being generated for this urgent threat pathogen.

12.
BMC Syst Biol ; 12(1): 25, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499714

RESUMO

BACKGROUND: The efficacy of antibiotics against M. tuberculosis has been shown to be influenced by experimental media conditions. Investigations of M. tuberculosis growth in physiological conditions have described an environment that is different from common in vitro media. Thus, elucidating the interplay between available nutrient sources and antibiotic efficacy has clear medical relevance. While genome-scale reconstructions of M. tuberculosis have enabled the ability to interrogate media differences for the past 10 years, recent reconstructions have diverged from each other without standardization. A unified reconstruction of M. tuberculosis H37Rv would elucidate the impact of different nutrient conditions on antibiotic efficacy and provide new insights for therapeutic intervention. RESULTS: We present a new genome-scale model of M. tuberculosis H37Rv, named iEK1011, that unifies and updates previous M. tuberculosis H37Rv genome-scale reconstructions. We functionally assess iEK1011 against previous models and show that the model increases correct gene essentiality predictions on two different experimental datasets by 6% (53% to 60%) and 18% (60% to 71%), respectively. We compared simulations between in vitro and approximated in vivo media conditions to examine the predictive capabilities of iEK1011. The simulated differences recapitulated literature defined characteristics in the rewiring of TCA metabolism including succinate secretion, gluconeogenesis, and activation of both the glyoxylate shunt and the methylcitrate cycle. To assist efforts to elucidate mechanisms of antibiotic resistance development, we curated 16 metabolic genes related to antimicrobial resistance and approximated evolutionary drivers of resistance. Comparing simulations of these antibiotic resistance features between in vivo and in vitro media highlighted condition-dependent differences that may influence the efficacy of antibiotics. CONCLUSIONS: iEK1011 provides a computational knowledge base for exploring the impact of different environmental conditions on the metabolic state of M. tuberculosis H37Rv. As more experimental data and knowledge of M. tuberculosis H37Rv become available, a unified and standardized M. tuberculosis model will prove to be a valuable resource to the research community studying the systems biology of M. tuberculosis.


Assuntos
Genômica/normas , Modelos Genéticos , Mycobacterium tuberculosis/genética , Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , Padrões de Referência
13.
Bioinformatics ; 34(12): 2155-2157, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444205

RESUMO

Summary: Working with protein structures at the genome-scale has been challenging in a variety of ways. Here, we present ssbio, a Python package that provides a framework to easily work with structural information in the context of genome-scale network reconstructions, which can contain thousands of individual proteins. The ssbio package provides an automated pipeline to construct high quality genome-scale models with protein structures (GEM-PROs), wrappers to popular third-party programs to compute associated protein properties, and methods to visualize and annotate structures directly in Jupyter notebooks, thus lowering the barrier of linking 3D structural data with established systems workflows. Availability and implementation: ssbio is implemented in Python and available to download under the MIT license at http://github.com/SBRG/ssbio. Documentation and Jupyter notebook tutorials are available at http://ssbio.readthedocs.io/en/latest/. Interactive notebooks can be launched using Binder at https://mybinder.org/v2/gh/SBRG/ssbio/master?filepath=Binder.ipynb. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Conformação Proteica , Software
14.
BMC Syst Biol ; 10(1): 40, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27266508

RESUMO

BACKGROUND: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question. RESULTS: In this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more suitable for rate law approximations. CONCLUSIONS: Overall, our work generally supports the use of approximate rate laws when building large scale kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction accuracy when data is available. The work here should help to provide guidance to future kinetic modeling efforts on the choice of rate law and parameterization approaches.


Assuntos
Enzimas/metabolismo , Modelos Biológicos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA