Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 534: 896-901, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168187

RESUMO

The reduction of pancreatic ß cell mass is one of the key factors for the onset of type 2 diabetes. Many reports have indicated that insulin signaling is important for type 2 diabetes, but the mechanism by which insulin signaling is altered in pancreatic ß cells remains unclear. This study was designed to examine the role of histone deacetylases (HDACs) in the regulation of insulin signaling in pancreatic ß cells. We found that insulin signaling was downregulated by inhibition of HDAC6. HDAC6 expression was specifically observed in pancreatic ß cells and was decreased in the pancreatic islets of a type 2 diabetes mouse model. When a mouse pancreatic ß cell line (MIN6 cells) was treated with palmitic acid to mimic the effect of a high-fat diet on pancreatic ß cells, HDAC6 was imported into the nucleus. These results suggest that HDAC6 plays an important role in the regulation of insulin signaling in pancreatic ß cells. Therefore, clarifying the regulation of insulin signaling by HDAC6 may be a valuable approach for the treatment of type 2 diabetes.


Assuntos
Desacetilase 6 de Histona/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Desacetilase 6 de Histona/análise , Masculino , Camundongos Endogâmicos C57BL
2.
PLoS One ; 12(9): e0184435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886131

RESUMO

Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic ß cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic ß cells remains unclear. The involvement of epigenetic control in the onset of diabetes has also been reported. Thus, we analyzed the epigenetic control of insulin receptor substrate 2 (IRS2) expression in the MIN6 mouse insulinoma cell line. We found concomitant IRS2 up-regulation and enhanced insulin signaling in MIN6 cells, which resulted in an increase in cell proliferation. The H3K9 acetylation status of the Irs2 promoter was positively associated with IRS2 expression. Treatment of MIN6 cells with histone deacetylase inhibitors led to increased IRS2 expression, but this occurred in concert with low insulin signaling. We observed increased IRS2 lysine acetylation as a consequence of histone deacetylase inhibition, a modification that was coupled with a decrease in IRS2 tyrosine phosphorylation. These results suggest that insulin signaling in pancreatic ß cells is regulated by histone deacetylases through two novel pathways affecting IRS2: the epigenetic control of IRS2 expression by H3K9 promoter acetylation, and the regulation of IRS2 activity through protein modification. The identification of the histone deacetylase isoform(s) involved in these mechanisms would be a valuable approach for the treatment of type 2 diabetes.


Assuntos
Histona Desacetilases/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Transdução de Sinais , Acetilação , Animais , Linhagem Celular Tumoral , Proliferação de Células , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Fosforilação , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 112(27): 8332-7, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100882

RESUMO

Genetic factors are important determinants of the onset and progression of diabetes mellitus. Numerous susceptibility genes for type 2 diabetes, including potassium voltage-gated channel, KQT-like subfamily Q, member1 (KCNQ1), have been identified in humans by genome-wide analyses and other studies. Experiments with genetically modified mice have also implicated various genes in the pathogenesis of diabetes. However, the possible effects of the parent of origin for diabetes susceptibility alleles on disease onset have remained unclear. Here, we show that a mutation at the Kcnq1 locus reduces pancreatic ß-cell mass in mice by epigenetic modulation only when it is inherited from the father. The noncoding RNA KCNQ1 overlapping transcript1 (Kcnq1ot1) is expressed from the Kcnq1 locus and regulates the expression of neighboring genes on the paternal allele. We found that disruption of Kcnq1 results in reduced Kcnq1ot1 expression as well as the increased expression of cyclin-dependent kinase inhibitor 1C (Cdkn1c), an imprinted gene that encodes a cell cycle inhibitor, only when the mutation is on the paternal allele. Furthermore, histone modification at the Cdkn1c promoter region in pancreatic islets was found to contribute to this phenomenon. Our observations suggest that the Kcnq1 genomic region directly regulates pancreatic ß-cell mass and that genomic imprinting may be a determinant of the onset of diabetes mellitus.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57/genética , Epigênese Genética , Células Secretoras de Insulina/metabolismo , Canal de Potássio KCNQ1/genética , Mutação , Alelos , Animais , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Expressão Gênica , Impressão Genômica/genética , Glucose/farmacologia , Teste de Tolerância a Glucose , Immunoblotting , Padrões de Herança , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Canal de Potássio KCNQ1/metabolismo , Masculino , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...