Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-35602337

RESUMO

Cerebral ischemia-reperfusion injury induces multi-dimensional damage to neuronal cells through exacerbation of critical protective mechanisms. Targeting more than one mechanism simultaneously namely, inflammatory responses and metabolic energy homeostasis could provide additional benefits to restrict or manage cerebral injury. Being proven neuroprotective agents both, progesterone (PG) and trimetazidine (TMZ) has the potential to add on the individual therapeutic outcomes. We hypothesized the simultaneous administration of PG and TMZ could complement each other to synergize, or at least enhance neuroprotection in reperfusion injury. We investigated the combination of PG and TMZ on middle cerebral artery occlusion (MCAO) induced cerebral reperfusion injury in rats. Molecular docking on targets of energy homeostasis and apoptosis assessed the initial viability of PG and TMZ for neuroprotection. Animal experimentation with MCA induced ischemia-reperfusion (I/R) injury in rats was performed on five randomized groups. Sham operated control group received vehicle (saline) while the other four I-R groups were pre-treated with vehicle (saline), PG (8 â€‹mg/kg), TMZ treated (25 â€‹mg/kg), and PG â€‹+ â€‹TMZ (8 and 25 â€‹mg/kg) for 7 days by intraperitoneal route. Neurological deficit, infarct volume, and oxidative stress were evaluated to assess the extent of injury in rats. Inflammatory reactivity and apoptotic activity were determined with alterations in myeloperoxidase (MPO) activity, blood-brain barrier (BBB) permeability, and DNA fragments. Reperfusion injury inflicted cerebral infarct, neurological deficit, and shattered BBB integrity. The combination treatment of PG and TMZ restricted cellular damage indicated by significant (p â€‹< â€‹0.05) decrease in infarct volume and improvement in free radical scavenging ability (SOD activity and GSH level). MPO activity and LPO decreased which contributed in improved BBB integrity in treated rats. We speculate that inhibition of inflammatory and optimum energy utilization would critically contribute to observed neuroprotection with combined PG and TMZ treatment. Further exploration of this neuroprotective approach for post-recovery cognitive improvement is worth investigating.

3.
Naunyn Schmiedebergs Arch Pharmacol ; 395(2): 167-185, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34988596

RESUMO

Ischemic stroke presents multifaceted pathological outcomes with overlapping mechanisms of cerebral injury. High mortality and disability with stroke warrant a novel multi-targeted therapeutic approach. The neuroprotection with progesterone (PG) and noscapine (NOS) on cerebral ischemia-reperfusion (I-R) injury was demonstrated individually, but the outcome of combination treatment to alleviate cerebral damage is still unexplored. Randomly divided groups of rats (n = 6) were Sham-operated, I-R, PG (8 mg/kg), NOS (10 mg/kg), and PG + NOS (8 mg/kg + 10 mg/kg). The rats were exposed to bilateral common carotid artery occlusion, except Sham-operated, to investigate the therapeutic outcome of PG and NOS alone and in combination on I-R injury. Besides the alterations in cognitive and motor abilities, we estimated infarct area, oxidative stress, blood-brain barrier (BBB) permeability, and histology after treatment. Pharmacokinetic parameters like Cmax, Tmax, half-life, and AUC0-t were estimated in biological samples to substantiate the therapeutic outcomes of the combination treatment. We report PG and NOS prevent loss of motor ability and improve spatial memory after cerebral I-R injury. Combination treatment significantly reduced inflammation and restricted infarction; it attenuated oxidative stress and BBB damage and improved grip strength. Histopathological analysis demonstrated a significant reduction in leukocyte infiltration with the most profound effect in the combination group. Simultaneous analysis of PG and NOS in plasma revealed enhanced peak drug concentration, improved AUC, and prolonged half-life; the drug levels in the brain have increased significantly for both. We conclude that PG and NOS have beneficial effects against brain damage and the co-administration further reinforced neuroprotection in the cerebral ischemia-reperfusion injury.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Noscapina/administração & dosagem , Progesterona/administração & dosagem , Animais , Área Sob a Curva , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Meia-Vida , AVC Isquêmico/tratamento farmacológico , Masculino , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Noscapina/farmacocinética , Noscapina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Progesterona/farmacocinética , Progesterona/farmacologia , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico
5.
Naunyn Schmiedebergs Arch Pharmacol ; 394(4): 669-683, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33106921

RESUMO

With high unmet medical needs, stroke remains an intensely focused research area. Although noscapine is a neuroprotective agent, its mechanism of action in ischemic-reperfusion (I-R) injury is yet to be ascertained. We investigated the effect of noscapine on the molecular mechanisms of cell damage using yeast, and its neuroprotection on cerebral I-R injury in rats. Yeast, both wild-type and Δtrx2 strains, was evaluated for cell growth and viability, and oxidative stress to assess the noscapine effect at 8, 10, 12, and 20 µg/ml concentrations. The neuroprotective activity of noscapine (5 and 10 mg/kg; po for 8 days) was investigated in rats using middle cerebral artery occlusion-induced I-R injury. Infarct volume, neurological deficit, oxidative stress, myeloperoxidase activity, and histological alterations were determined in I-R rats. In vitro yeast assays exhibited significant antioxidant activity and enhanced cell tolerance against oxidative stress after noscapine treatment. Similarly, noscapine pretreatment significantly reduced infarct volume and edema in the brain. The neurological deficit was decreased and oxidative stress biomarkers, superoxide dismutase activity and glutathione levels, were significantly increased while lipid peroxidation showed significant decrease in comparison to vehicle-treated I-R rats. Myeloperoxidase activity, an indicator of inflammation, was also reduced significantly in treated rats; histological changes were attenuated with noscapine. The study demonstrates the protective effect of noscapine in yeast and I-R rats by improving cell viability and attenuating neuronal damage, respectively. This protective activity of noscapine could be attributed to potent free radical scavenging and inhibition of inflammation in cerebral ischemia-reperfusion injury.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Noscapina/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Marcha/efeitos dos fármacos , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Força Muscular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Noscapina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...