Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Pharmaceutics ; 16(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794318

RESUMO

Pseudomonas aeruginosa infection is an infectious disease that must be controlled because it becomes chronic and difficult to treat, owing to its unique system of toxin production/injection and elimination of other bacteria. Here, we noninvasively monitored P. aeruginosa using single-photon emission computed tomography (SPECT) imaging. Determining the amount and localization of the P. aeruginosa will enable making faster clinical diagnoses and selecting the most appropriate therapeutic agents and methods. Nonclinically, this information can be used for imaging in combination with biofilms and toxin probes and will be useful for discovering drugs targeting P. aeruginosa. To study P. aeruginosa accumulation, we conducted in vitro and in vivo studies using iodine-123 ß-methyl-p-iodophenyl-pentadecanoic acid (123I-BMIPP), which we previously reported using for Escherichia coli. In vitro, 123I-BMIPP accumulated in P. aeruginosa by being taken up into the bacteria and adsorbing to the bacterial surface. In vivo, 123I-BMIPP accumulated significantly more in infected sites than in noninfected sites and could be quantified by SPECT. These results suggest that 123I-BMIPP can be used as a probe for P. aeruginosa for SPECT. Establishing a noninvasive monitoring method using SPECT will allow further progress in studying P. aeruginosa.

2.
J Control Release ; 359: 384-399, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315691

RESUMO

The nose-to-brain (N2B) pathway has garnered attention because it transports drugs directly into the brain. Although recent studies have suggested the necessity of selective drug administration to the olfactory region for effective N2B drug delivery, the importance of delivering the formulation to the olfactory region and the detailed pathway involved in drug uptake in primates brain remain unclear. Here, we developed a combination system for N2B drug delivery comprising a proprietary mucoadhesive powder formulation and a dedicated nasal device (N2B-system) and evaluated it for nasal drug delivery to the brain in cynomolgus monkeys. This N2B-system demonstrated a much greater formulation distribution ratio in the olfactory region in an in vitro experiment using a 3D-printed nasal cast and in vivo experiment using cynomolgus monkeys, as compared to that in other nasal drug delivery systems that comprise of a proprietary nasal powder device developed for nasal absorption and vaccination and a commercially available liquid spray. Additionally, Texas Red-labeled dextran (TR-DEX, 3 kDa) was administered using the N2B-system to estimate the drug transition pathway from the nasal cavity to the brain. TR-DEX preferentially localized to the olfactory epithelium and reached the olfactory bulb through the cribriform foramina. Moreover, domperidone, a model drug with poor blood-brain barrier permeability, was administered to assess the brain uptake of medicine after olfactory region-selective administration by using the N2B-system. Domperidone accumulation in the brain was evaluated using positron emission tomography with intravenously administered [18F]fallypride based on competitive inhibition of the dopamine D2 receptor (D2R). Compared to other systems, the N2B-system significantly increased D2R occupancy and domperidone uptake in the D2R-expressing brain regions. The current study reveals that the olfactory region of the nasal cavity is a suitable target for efficient nasal drug delivery to the brain in cynomolgus monkeys. Thus, the N2B-system, which targets the olfactory region, provides an efficient approach for developing effective technology for nasal drug delivery to the brain in humans.


Assuntos
Encéfalo , Domperidona , Humanos , Animais , Administração Intranasal , Pós , Domperidona/metabolismo , Domperidona/farmacologia , Macaca fascicularis , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas/metabolismo
3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902204

RESUMO

The World Health Organization has cautioned that antimicrobial resistance (AMR) will be responsible for an estimated 10 million deaths annually by 2050. To facilitate prompt and accurate diagnosis and treatment of infectious disease, we investigated the potential of amino acids for use as indicators of bacterial growth activity by clarifying which amino acids are taken up by bacteria during the various growth phases. In addition, we examined the amino acid transport mechanisms that are employed by bacteria based on the accumulation of labeled amino acids, Na+ dependence, and inhibitory effects using a specific inhibitor of system A. We found that 3H-L-Ala accurately reflects the proliferative activity of Escherichia coli K-12 and pathogenic EC-14 in vitro. This accumulation in E. coli could be attributed to the amino acid transport systems being different from those found in human tumor cells. Moreover, biological distribution assessed in infection model mice with EC-14 using 3H-L-Ala showed that the ratio of 3H-L-Ala accumulated in infected muscle to that in control muscle was 1.20. By detecting the growth activity of bacteria in the body that occurs during the early stages of infection by nuclear imaging, such detection methods may result in expeditious diagnostic treatments for infectious diseases.


Assuntos
Infecções Bacterianas , Escherichia coli K12 , Animais , Camundongos , Humanos , Escherichia coli/metabolismo , Escherichia coli K12/metabolismo , Bactérias , Aminoácidos/metabolismo , Alanina/metabolismo
4.
Pharmaceutics ; 15(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36839818

RESUMO

We evaluated the whole-body distribution of orally-administered radioiodine-125 labeled acetaminophen (125I-AP) to estimate gastrointestinal absorption of anionic drugs. 125I-AP was added to human embryonic kidney (HEK)293 and Flp293 cells expressing human organic anion transporting polypeptide (OATP)1B1/3, OATP2B1, organic anion transporter (OAT)1/2/3, or carnitine/organic cation transporter (OCTN)2, with and without bromosulfalein (OATP and multidrug resistance-associated protein (MRP) inhibitor) and probenecid (OAT and MRP inhibitor). The biological distribution in mice was determined by oral administration of 125I-AP with and without bromosulfalein and by intravenous administration of 125I-AP. The uptake of 125I-AP was significantly higher in HEK293/OATP1B1, OATP1B3, OATP2B1, OAT1, and OAT2 cells than that in mock cells. Bromosulfalein and probenecid inhibited OATP- and OAT-mediated uptake, respectively. Moreover, 125I-AP was easily excreted in the urine when administered intravenously. The accumulation of 125I-AP was significantly lower in the blood and urinary bladder of mice receiving oral administration of both 125I-AP and bromosulfalein than those receiving only 125I-AP, but significantly higher in the small intestine due to inhibition of OATPs and/or MRPs. This study indicates that whole-body distribution after oral 125I-AP administration can be used to estimate gastrointestinal absorption in the small intestine via OATPs, OATs, and/or MRPs by measuring radioactivity in the urinary bladder.

5.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232758

RESUMO

Drug metabolizing enzyme activity is affected by various factors such as drug-drug interactions, and a method to quantify drug metabolizing enzyme activity in real time is needed. In this study, we developed a novel radiopharmaceutical for quantitative imaging to estimate hepatic CYP3A4 and CYP2D6 activity. Iodine-123- and 125-labeled O-desmethylvenlafaxine (123/125I-ODV) was obtained with high labeling and purity, and its metabolism was found to strongly involve CYP3A4 and CYP2D6. SPECT imaging in normal mice showed that the administered 123I-ODV accumulated early in the liver and was excreted into the gallbladder, as evaluated by time activity curves. In its biological distribution, 125I-ODV administered to mice accumulated early in the liver, and only the metabolite of 125I-ODV was quickly excreted into the bile. In CYP3A4- and CYP2D6-inhibited model mice, the accumulation in bile decreased more than in normal mice, indicating inhibition of metabolite production. These results indicated that imaging and quantifying the accumulation of radioactive metabolites in excretory organs will aid in determining the dosages of various drugs metabolized by CYP3A4 and CYP2D6 for individualized medicine. Thus, 123/125I-ODV has the potential to direct, comprehensive detection and measurement of hepatic CYP3A4 and CYP2D6 activity by a simple and less invasive approach.


Assuntos
Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Radioisótopos do Iodo , Fígado , Animais , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Succinato de Desvenlafaxina , Radioisótopos do Iodo/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Compostos Radiofarmacêuticos/farmacologia , Cloridrato de Venlafaxina
6.
Pharmaceutics ; 14(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35631596

RESUMO

In this study, we evaluated the use of 15-(4-123I-iodophenyl)-3(R,S)-methylpentadecanoic acid (123I-BMIPP) to visualize fatty acid metabolism in bacteria for bacterial infection imaging. We found that 123I-BMIPP, which is used for fatty acid metabolism scintigraphy in Japan, accumulated markedly in Escherichia coli EC-14 similar to 18F-FDG, which has previously been studied for bacterial imaging. To elucidate the underlying mechanism, we evaluated changes in 123I-BMIPP accumulation under low-temperature conditions and in the presence of a CD36 inhibitor. The uptake of 123I-BMIPP by EC-14 was mediated via the CD36-like fatty-acid-transporting membrane protein and accumulated by fatty acid metabolism. In model mice infected with EC-14, the biological distribution and whole-body imaging were assessed using 123I-BMIPP and 18F-FDG. The 123I-BMIPP biodistribution study showed that, 8 h after infection, the ratio of 123I-BMIPP accumulated in infected muscle to that in control muscle was 1.31 at 60 min after 123I-BMIPP injection. In whole-body imaging 1.5 h after 123I-BMIPP administration and 9.5 h after infection, infected muscle exhibited a 1.33-times higher contrast than non-infected muscle. Thus, 123I-BMIPP shows potential for visualizing fatty acid metabolism of bacteria for imaging bacterial infections.

7.
Pharmaceutics ; 14(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35631611

RESUMO

Single-photon emission computed tomography (SPECT) imaging using intravenous radioactive ligand administration to indirectly evaluate the time-dependent effect of intranasal drugs with poor blood-brain barrier permeability on brain drug distributions in mice was evaluated. The biodistribution was examined using domperidone, a dopamine D2 receptor ligand, as the model drug, with intranasal administration at 0, 15, or 30 min before intravenous [123I]IBZM administration. In the striatum, [123I]IBZM accumulation was significantly lower after intranasal (IN) domperidone administration than in controls 15 min after intravenous [125I]IBZM administration. [123I]IBZM SPECT was acquired with intravenous (IV) or IN domperidone administration 15 min before [123I]IBZM, and time-activity curves were obtained. In the striatum, [123I]IBZM accumulation was clearly lower in the IN group than in the control and IV groups. Time-activity curves showed no significant difference between the control and IV groups in the striatum, and values were significantly lowest during the first 10 min in the IN group. In the IN group, binding potential and % of receptor occupancy were significantly lower and higher, respectively, compared to the control and IV groups. Thus, brain-migrated domperidone inhibited D2R binding of [123I]IBZM. SPECT imaging is suitable for research to indirectly explore nose-to-brain drug delivery and locus-specific biological distribution.

8.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269610

RESUMO

The effectiveness of L- and D-amino acids for detecting the early stage of infection in bacterial imaging was compared. We evaluated the accumulation of 3H-L-methionine (Met), 3H-D-Met, 3H-L-alanine (Ala), and 3H-D-Ala in E. coli EC-14 and HaCaT cells. Biological distribution was assessed in control and lung-infection-model mice with EC-14 using 3H-L- and D-Met, and 18F-FDG. A maximum accumulation of 3H-L- and D-Met, and 3H-L- and D-Ala occurred in the growth phase of EC-14 in vitro. The accumulation of 3H-L-Met and L-Ala was greater than that of 3H-D-Met and D-Ala in both EC-14 and HaCaT cells. For all radiotracers, the accumulation was greater in EC-14 than in HaCaT cells at early time points. The accumulation was identified at 5 min after injection in EC-14, whereas the accumulation gradually increased in HaCaT cells over time. There was little difference in biodistribution between 3H-L-and D-Met except in the brain. 3H-L- and D-Met were sensitive for detecting areas of infection after the spread of bacteria throughout the body, whereas 18F-FDG mainly detected primary infection areas. Therefore, 11C-L- and D-Met, radioisotopes that differ only in terms of 3H labeling, could be superior to 18F-FDG for detecting bacterial infection in lung-infection-model mice.


Assuntos
Aminoácidos , Fluordesoxiglucose F18 , Animais , Modelos Animais de Doenças , Escherichia coli/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Metionina/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Distribuição Tecidual
9.
Front Pharmacol ; 13: 1069321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712667

RESUMO

Chemoradiotherapy is frequently used to treat cancer. Stereotactic body radiotherapy (SBRT) is a single high-dose radiotherapy used to treat a variety of cancers. The anticancer drug methotrexate (MTX) shows affinity for solute carrier (SLC) and ATP-binding cassette (ABC) transporters. This study investigated relationships between accumulation of methotrexate and gene expression levels of solute carrier and ATP-binding cassette transporters in cancer cells after a single and high-dose X-ray irradiation. Cancer cell lines were selected from lung and cervical cancer cell line that are commonly used for stereotactic body radiotherapy and effective with methotrexate. We examined expression levels of organic anion-transporting polypeptide (OATP)1B1, OATP1B3, OATP1B7, and organic anion transporter (OAT)1 as solute carrier transporters and multidrug resistance-associated protein (MRP)1 and MRP2 as ATP-binding cassette transporters, using real-time polymerase chain reaction and accumulation of 3H-MTX in cancer cells after 10-Gy irradiation, assuming stereotactic body radiotherapy. Cells were divided into three groups: Control without irradiation; 4 h after irradiation; and 24 h after irradiation. In control, gene expression levels of OAT1 in all cells was below the limit of measurement. After irradiation, gene expression levels of OATP1B1/1B3/1B7 showed changes in each cell line. Gene expression levels of MRP1/2 tended to increase after irradiation. Gene expression levels of OATP1B1/1B3/1B7 were much lower than those of MRP1/2. Accumulation of 3H-MTX tended to decrease over time after irradiation. Irradiation of cancer cells thus alters gene expression levels of both solute carrier transporters (OATP1B1/1B3/1B7) and ABC transporters (MRP1/2) and decreases accumulation of 3H-MTX in cancer cells over time due to elevated expression of MRP1/2.

10.
Pharmaceutics ; 13(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34371764

RESUMO

The accumulation of high levels of 99mTc-tetrofosmin (99mTc-TF) in the hepatobiliary system can lead to imaging artifacts and interference with diagnosis. The present study investigated the transport mechanisms of 99mTc-TF and attempted to apply competitive inhibition using a specific inhibitor to reduce 99mTc-TF hepatic accumulation. In this in vitro study, 99mTc-TF was incubated in HEK293 cells expressing human organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, OATP2B1, organic anion transporter 2 (OAT2), organic cation transporter 1 (OCT1), OCT2, and Na+-taurocholate cotransporting polypeptide with or without each specific inhibitor to evaluate the contribution of each transporter to 99mTc-TF transportation. In vivo studies, dynamic planar imaging, and single photon emission computed tomography (SPECT) experiments with rats were performed to observe alterations to 99mTc-TF pharmacokinetics using cimetidine (CMT) as an OCT1 inhibitor. Time-activity curves in the liver and heart were acquired from dynamic data, and the 99mTc-TF uptake ratio was calculated from SPECT. From the in vitro study, 99mTc-TF was found to be transported by OCT1 and OCT2. When CMT-preloaded rats and control rats were compared, the hepatic accumulation of the 99mTc-TF was reduced, and the time to peak heart count shifted to an earlier stage. The hepatic accumulation of 99mTc-TF was markedly suppressed, and the heart-to-liver ratio increased 1.6-fold. The pharmacokinetics of 99mTc-TF were greatly changed by OCT1 inhibitor. Even in humans, the administration of OCT1 inhibitor before cardiac SPECT examination may reduce 99mTc-TF hepatic accumulation and contribute to the suppression of artifacts and the improvement of SPECT image quality.

11.
Nucl Med Biol ; 94-95: 92-97, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33609918

RESUMO

INTRODUCTION: We clarified the renal uptake and urinary secretion mechanism of [99mTc]dimercaptosuccinic acid ([99mTc]DMSA) via drug transporters in renal proximal tubules. METHODS: [99mTc]DMSA was added to human embryonic kidney 293 cells expressing human multidrug and toxin extrusion (MATE)1 and MATE2-K, carnitine/organic cation transporter (OCTN)1 and OCTN2, and organic cation transporter (OCT)2; to Flp293 cells expressing human organic anion transporter (OAT)1 and OAT3; and to vesicles expressing P-glycoprotein (P-gp), multidrug resistance associated protein (MRP)2, MRP4, or breast cancer resistance protein with and without probenecid (OAT inhibitor for both OATs and MRPs). Time activity curves of [99mTc]DMSA with and without probenecid were established using LLC-PK1 cells. Biodistribution and single photon emission computed tomography (SPECT) imaging in mice were conducted using [99mTc]DMSA with and without probenecid. RESULTS: [99mTc]DMSA uptake was significantly higher in Flp293/OAT3 than in mock cells. Uptake via OAT3 was inhibited by probenecid. [99mTc]DMSA uptake into vesicles that highly expressed MRP2 was significantly higher in adenosine triphosphate (ATP) than in adenosine monophosphate (AMP), and probenecid decreased uptake to similar levels as that in AMP. In the time activity curves for [99mTc]DMSA in LLC-PK1 cells, probenecid loading inhibited accumulation from the basolateral side into LLC-PK1 cells, whereas accumulation from the apical side into cells gradually increased. Transport of [99mTc]DMSA from both sides was low. Biodistribution and SPECT imaging studies showed that [99mTc]DMSA with probenecid loading resulted in significantly higher accumulation in blood, heart, liver, and bladder after [99mTc]DMSA injection compared with control mice. Probenecid induced significantly lower accumulation in the kidney after [99mTc]DMSA injection. CONCLUSIONS: [99mTc]DMSA accumulates in renal proximal tubular epithelial cells from blood via OAT3 on the basolateral side, and then a small volume of [99mTc]DMSA will be excreted in urine via MRP2. ADVANCES IN KNOWLEDGE: [99mTc]DMSA accumulates via OAT3 in renal proximal tubular epithelial cells and is slightly excreted from the cells via MRP2. IMPLICATIONS FOR PATIENT CARE: [99mTc]DMSA may be useful for measuring renal transport function with OAT3 in patients.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ácido Dimercaptossuccínico Tecnécio Tc 99m/metabolismo , Ácido Dimercaptossuccínico Tecnécio Tc 99m/urina , Transporte Biológico , Linhagem Celular , Proteína 2 Associada à Farmacorresistência Múltipla , Ácido Dimercaptossuccínico Tecnécio Tc 99m/farmacocinética , Distribuição Tecidual
12.
Pharmaceutics ; 14(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35056957

RESUMO

Gastrointestinal tract absorption of cationic anticancer drugs and medicines was estimated using whole-body imaging following oral [123I]MIBG administration. [123I]MIBG was added to cultures of human embryonic kidney (HEK)293 cells expressing human organic anion transporting polypeptide (OATP)2B1, carnitine/organic cation transporter (OCTN)1 and OCTN2, and organic cation transporter (OCT)1, OCT2, and OCT3 with and without cimetidine (an OCTN and OCT inhibitor) and L-carnitine (an OCTN inhibitor). Biodistribution analyses and single-photon emission computed tomography (SPECT) imaging in normal and dextran sodium sulfate (DSS)-induced experimental colitis mice were conducted using [123I]MIBG with and without cimetidine. [123I]MIBG uptake was significantly higher in HEK293/OCTN1, 2, and OCT1-3 cells than in mock cells. Uptake via OCTN was inhibited by L-carnitine, whereas OCT-mediated uptake was inhibited by cimetidine. Biodistribution analyses and SPECT imaging studies showed significantly lower accumulation of [123I]MIBG in the blood, heart, liver, and bladder in DSS-induced experimental colitis mice and mice with cimetidine loading compared with normal mice, whereas significantly higher accumulation in the stomach and kidney was observed after [123I]MIBG injection. [123I]MIBG imaging after oral administration can be used to estimate gastrointestinal absorption in the small intestine via OCTN and/or OCT by measuring radioactivity in the heart, liver, and bladder.

13.
Nucl Med Biol ; 90-91: 49-54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33032192

RESUMO

INTRODUCTION: 131I-labeled m-iodobenzylguanidine ([131I]MIBG) has been used to treat neuroblastoma patients, but [131I]MIBG may be immediately excreted from the cancer cells by the adenosine triphosphate binding cassette transporters, similar to anticancer drugs. The purpose of this study was to clarify the efflux mechanism of [131I]MIBG in neuroblastomas and improve accumulation by inhibition of the transporter in neuroblastomas. METHODS: [131I]MIBG was incubated in human embryonic kidney (HEK)293 cells expressing human organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, organic anion transporter (OAT)1 and OAT2, organic cation transporter (OCT)1 and OCT2, and sodium taurocholate cotransporting polypeptide, and in vesicles expressing P-glycoprotein (MDR1), multidrug resistance associated protein (MRP)1-4, or breast cancer resistance protein with and without MK-571 and probenecid (MRP inhibitors). Time activity curves of [131I]MIBG with and without MK-571 and probenecid were established using an SK-N-SH neuroblastoma cell line, and transporter expression of multiple drug resistance was measured. Biodistribution and SPECT imaging examinations were conducted using [123I]MIBG with and without probenecid in SK-N-SH-bearing mice. RESULTS: [131I]MIBG uptake was significantly higher in OAT1, OAT2, OCT1, and OCT2 than in mock cells. Uptake via OCT1 and OCT2 was little inhibited by MK-571 and probenecid. [131I]MIBG uptake into vesicles that highly expressed MRP1 or MRP4 was significantly higher in ATP than in AMP, and these inhibitors restored uptake to levels similar to that in AMP. Examining the time activity curves for [131I]MIBG in SK-N-SH cells, higher expressions of MDR1, MRP1, MRP4, and MK-571, or probenecid loading produced significantly higher uptake than in control at most incubation times. The ratios of tumors to blood or muscle in SK-N-SH-bearing mice were significantly increased by probenecid loading in comparison with normal mice. CONCLUSIONS: [131I]MIBG exports via MRP1 and MRP4 in neuroblastoma. The accumulation and tumor-to-blood or muscle ratios of [131I]MIBG are improved by inhibition of MRPs with probenecid in neuroblastoma. ADVANCES IN KNOWLEDGE: [131I]MIBG, widely used for treatment of neuroendocrine tumors including neuroblastoma, is excreted via MRP1 and MRP4 in neuroblastoma. IMPLICATIONS FOR PATIENT CARE: Loading with probenecid, OAT, and MRP inhibitors improves [131I]MIBG accumulation.


Assuntos
3-Iodobenzilguanidina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Neuroblastoma/patologia , Animais , Transporte Biológico , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Distribuição Tecidual
14.
Nucl Med Biol ; 84-85: 33-37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31986465

RESUMO

Technetium-99m-labeled mercaptoacetyltriglycine ([99mTc]MAG3) is widely used for evaluation of transplanted kidneys, diagnosis of tubular necrosis, and scintigraphic studies of tubular function. [99mTc]MAG3 is a substrate for organic anion transporter (OAT)1 and OAT3 on the basolateral membrane side for renal secretion. We investigated the transport mechanism and affinity of [99mTc]MAG3 on the apical membrane of renal proximal tubule cells for renal secretion. Adenosine triphosphate-binding cassette (ABC) transporters for renal secretion of [99mTc]MAG3 were examined using ABC transporter vesicles expressing multiple drug resistance 1 (MDR1), breast cancer resistance protein (BCRP), multidrug resistance-associated protein (MRP)2, and MRP4. MK-571, a MRP inhibitor, was applied to measure the Km and Vmax of MRP2 and MRP4 in a vesicle transport assay. Single photon emission computed tomography (SPECT) was performed in normal rats and MRP2-deficient Eisai hyperbilirubinuria rats (EHBR) using [99mTc]MAG3 with and without MK-571. [99mTc]MAG3 uptake in adenosine triphosphate was significantly higher than that in adenosine monophosphate in vesicles that highly expressed MRP2 and MRP4. The affinity of [99mTc]MAG3 for MRP4 was higher than that for MRP2. Renal secretion via MRP2 and MRP4 was identified by comparing normal and EHBR rats with and without MK-571 on SPECT. [99mTc]MAG3 is transported via MRP2 and MRP4 on the apical membrane of renal proximal tubule cells. The affinity of MRP4 is higher than that of MRP2. SIGNIFICANCE STATEMENT: [99mTc]MAG3, widely used for evaluation of transplanted kidneys, diagnosis of tubular necrosis, and scintigraphic studies of tubular function, is transported via MRP2 and MRP4 on the apical membrane of renal proximal tubule cells. The affinity of MRP4 is higher than that of MRP2.


Assuntos
Membrana Celular/metabolismo , Túbulos Renais Proximais/citologia , Tecnécio Tc 99m Mertiatida/metabolismo , Animais , Transporte Biológico , Túbulos Renais Proximais/diagnóstico por imagem , Ratos , Tomografia Computadorizada de Emissão de Fóton Único
15.
Sci Rep ; 9(1): 18478, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811194

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Sci Rep ; 9(1): 13413, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527775

RESUMO

We examined whether [131I]6-ß-iodomethyl-19-norcholesterol (NP-59), a cholesterol analog, can be used to measure function of hepatic drug transporters. Hepatic uptake of NP-59 with and without rifampicin was evaluated using HEK293 cells expressing solute carrier transporters. The stability of NP-59 was evaluated using mouse blood, bile, and liver, and human liver S9. Adenosine triphosphate-binding cassette (ABC) transporters for bile excretion were examined using hepatic ABC transporter vesicles expressing multidrug resistance protein 1, multidrug resistance-associated protein (MRP)1-4, breast cancer resistance protein (BCRP), or bile salt export pump with and without MK-571 and Ko143. Single photon emission computed tomography (SPECT) was performed in normal mice injected with NP-59 in the presence or absence of Ko143. Uptake of NP-59 into HEK293 cells expressing organic anion transporting polypeptide (OATP)1B1 and OATP1B3 was significantly higher than that into mock cells and was inhibited by rifampicin. NP-59 was minimally metabolized in mouse blood, bile, and liver, and human liver S9 after 120 min of incubation. In vesicles, NP-59 was transported by MRP1 and BCRP. Excretion of NP-59 into bile via BCRP was observed in normal mice with and without Ko143 in the biological distribution and SPECT imaging. NP-59 can be used to visualize and measure the hepatic function of OATP1B1, OATP1B3, and BCRP.


Assuntos
Adosterol/química , Bile/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Fígado/metabolismo , Rifampina/farmacologia , Adosterol/farmacocinética , Animais , Antibióticos Antituberculose/química , Antibióticos Antituberculose/farmacologia , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Rifampina/química , Distribuição Tecidual
17.
PLoS One ; 14(3): e0213397, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30901323

RESUMO

BACKGROUND: Although a 3-arm DOTA construct, which has three carboxylic acids, h has been applied for conjugation to many peptides, we investigated if a 4-arm DOTA construct conjugated to peptides improves chemical properties for melanoma imaging of the melanocortin 1 receptor compared to 3-arm DOTA-conjugated peptides. METHODS: Specific activities, radiolabeling efficiencies, and partition coefficients were evaluated using 111In-labeled 3-arm and 4-arm DOTA-α-melanocyte-stimulating hormone (MSH). For assessment of MC1-R affinity and accumulation in tumor cells in vitro, B16-F1 melanoma and/or 4T1 breast cancer cells were incubated with 111In-labeled 3-arm and 4-arm DOTA-α-MSH with and without α-MSH as a substrate. The stability was evaluated using mouse liver homogenates and plasma. Biological distribution and whole-body single photon emission computed tomography imaging of 111In-labeled 3-arm and 4-arm DOTA-α-MSH were obtained using B16-F1 melanoma-bearing mice. RESULTS: Specific activities and radiolabeling efficiencies of both radiotracers were about 1.2 MBq/nM and 90-95%, respectively. The partition coefficients were -0.28 ± 0.03 for 111In-labeled 3-arm DOTA-α-MSH and -0.13 ± 0.04 for 111In-labeled 4-arm DOTA-α-MSH. Although accumulation was significantly inhibited by α-MSH in B16-F1 cells, the inhibition rate of 111In-labeled 4-arm DOTA-α-MSH was lower than that of 111In-labeled 3-arm DOTA-α-MSH. 111In-labeled 4-arm DOTA-α-MSH was taken up early into B16-F1 cells and showed higher accumulation than 111In-labeled 3-arm DOTA-α-MSH after 10 min of incubation. Although these stabilities were relatively high, the stability of 111In-labeled 4-arm DOTA-α-MSH was higher than that of 111In-labeled 3-arm DOTA-α-MSH. Regarding biological distribution, 111In-labeled 4-arm DOTA-α-MSH showed significantly lower average renal accumulation (1.38-fold) and significantly higher average melanoma accumulation (1.32-fold) than 111In-labeled 3-arm DOTA-α-MSH at all acquisition times. 111In-labeled 4-arm DOTA-α-MSH showed significantly higher melanoma-to-kidney, melanoma-to-blood, and melanoma-to-muscle ratios than 111In-labeled 3-arm DOTA-α-MSH. CONCLUSIONS: The 4-arm DOTA construct has better chemical properties for peptide radiotracers than the 3-arm DOTA construct.


Assuntos
Complexos de Coordenação , Compostos Heterocíclicos com 1 Anel , Melanoma Experimental/diagnóstico por imagem , Compostos Radiofarmacêuticos , alfa-MSH/análogos & derivados , Animais , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Estabilidade de Medicamentos , Feminino , Compostos Heterocíclicos com 1 Anel/síntese química , Compostos Heterocíclicos com 1 Anel/química , Radioisótopos de Índio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Tomografia Computadorizada de Emissão de Fóton Único , alfa-MSH/química
18.
Pharm Res ; 36(1): 18, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498970

RESUMO

BACKGROUND: Little is known about the affinity and stability of 99mTc-labeled 2-methoxyisobutylisonitrile (99mTc-MIBI) and tetrofosmin (99mTc-TF) for imaging of multiple drug resistance transporters in cancer. We examined the affinity of 99mTc-labeled compounds for these transporters and their stability. METHODS: 99mTc-MIBI and 99mTc-TF were incubated in vesicles expressing P-glycoprotein (MDR1), multidrug resistance-associated protein (MRP)1-4, or breast cancer resistance protein with and without verapamil (MDR1 inhibitor) or MK-571 (MRP inhibitor). Time activity curves of 99mTc-labeled compounds were established using SK-N-SH neuroblastoma, SK-MEL-28 melanoma, and PC-3 prostate adenocarcinoma cell lines, and transporter expression of multiple drug resistance was measured in these cells. The stability was evaluated. RESULTS: In vesicles, 99mTc-labeled compounds had affinity for MDR1 and MRP1. 99mTc-TF had additional affinity for MRP2 and MRP3. In SK-N-SH cells expressing MDR1 and MRP1, MK-571 produced the highest uptake of both 99mTc-labeled compounds. 99mTc-MIBI uptake with inhibitors was higher than 99mTc-TF uptake with inhibitors. 99mTc-TF was taken up more in SK-MEL-28 cells expressing MRP1 and MRP2 than PC-3 cells expressing MRP1 and MRP3. 99mTc-MIBI was metabolized, whereas 99mTc-TF had high stability. CONCLUSION: 99mTc-MIBI is exported via MDR1 and MRP1 (MRP1 > MDR1) at greater levels and more quickly compared to 99mTc-TF, which is exported via MDR1 and MRP1-3 (MRP1 > MDR1; MRP1, 2 > MRP3). Because 99mTc-MIBI is metabolized, clinical imaging for monitoring MDR and shorter examination times may be possible with an earlier scanning time on late phase imaging. 99mTc-TF has high stability and accurately reflects the function of MDR1 and MRP1-3.


Assuntos
Monitoramento de Medicamentos/métodos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Imagem Molecular/métodos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Animais , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Feminino , Humanos , Fígado/diagnóstico por imagem , Fígado/metabolismo , Camundongos SCID , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Compostos de Organotecnécio/química , Compostos de Organotecnécio/metabolismo , Propionatos/farmacologia , Quinolinas/farmacologia , Compostos Radiofarmacêuticos/química , Fatores de Tempo , Verapamil/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Cardiovasc Electrophysiol ; 29(12): 1616-1623, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30176083

RESUMO

INTRODUCTION: A novel real-time lesion size index (LSI) that incorporates contact force (CF), time, and power has been developed for safe and effective catheter ablation. The optimal LSI was evaluated to eliminate gap formation during pulmonary vein isolation (PVI). METHODS AND RESULTS: Consecutive patients were enrolled, who underwent their first PVI using a fiber-optic CF-sensing catheter for atrial fibrillation between December 2016 and October 2017. The CF parameters, force-time integral (FTI), and LSI for 3095 ablation points in 34 patients were evaluated. The FTI and LSI in the lesions with gaps or dormant conduction (gaps/DC) were significantly lower than those in the lesion without gaps/DC (FTI: 140.5 ± 54.5 and 232.4 ± 121.4 g s, P < 0.0001; LSI: 4.0 ± 0.6 and 4.7 ± 0.9, P < 0.0001, respectively). On receiver operating characteristic curve analysis, the optimal LSI threshold was 4.05 (sensitivity, 63.4%; specificity, 76.3%). The LSI of <5.25 predicted a gap or DC with a high sensitivity (sensitivity, 97.6%; specificity, 25.7%). In the posterior wall, which was 37% thinner than the nonposterior wall, a lower LSI of <3.95 showed a relatively high sensitivity (92.3%) and specificity (65.6%). CONCLUSIONS: The LSI can be used to predict gaps/DC during the PVI procedure. An LSI of 5.2 may be a suitable target for effective lesion formation. An LSI of 4.0 may be acceptable in the posterior wall, especially in areas adjacent to the esophagus.


Assuntos
Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Sistema de Condução Cardíaco/fisiologia , Imageamento Tridimensional/normas , Veias Pulmonares/cirurgia , Idoso , Estudos de Coortes , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória/métodos , Monitorização Intraoperatória/normas , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/normas
20.
Case Rep Oncol ; 11(2): 383-387, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30022940

RESUMO

We present a case in which neoadjuvant arterial infusion chemotherapy was effective in treating a large superficial bladder cancer. A 50-year-old male was admitted to the Kanazawa Medical Center with the complaint of dizziness. The patient exhibited severe anemia, and his computer tomography showed a large bladder tumor. Cystoscopy revealed a large papillary tumor. Magnetic resonance imaging showed no muscle invasion and no metastasis. To avoid a prolonged operation time and excessive blood loss, we performed neoadjuvant arterial infusion chemotherapy for tumor volume reduction before transurethral resection of the bladder tumor (TUR-BT). The arterial infusion chemotherapy was performed twice, and the tumor size gradually reduced from 275 to 28 cm3. After neoadjuvant chemotherapy, TUR-BT was safely performed without blood transfusion. The tumor was staged as T1 with G1. This is the first report demonstrating that neoadjuvant arterial infusion chemotherapy is effective in treating large superficial bladder cancer and is a possible strategy for bladder preservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...